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Abstract

The notion of typicality appears in scientific theories, philosophical arguments, math-

ematical inquiry, and everyday reasoning. Typicality is invoked in statistical mechanics

to explain the behavior of gases. It is also invoked in quantum mechanics to explain the

appearance of quantum probabilities. Typicality plays an implicit role in non-rigorous

mathematical inquiry, as when a mathematician forms a conjecture based on personal

experience of what seems typical in a given situation. Less formally, the language of

typicality is a staple of the common parlance: we often claim that certain things are, or

are not, typical. But despite the prominence of typicality in science, philosophy, math-

ematics, and everyday discourse, no formal logics for typicality have been proposed. In

this paper, we propose two formal systems for reasoning about typicality. One system is

based on propositional logic: it can be understood as formalizing objective facts about

what is and is not typical. The other system is based on the logic of intuitionistic type

theory: it can be understood as formalizing subjective judgments about typicality.

1 Introduction

Typically, gases in non-equilibrium macrostates evolve to the equilibrium macrostate

relatively quickly. Not all gases do: in fact, the initial microstates of some gases prevent them
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from ever reaching equilibrium. But those initial microstates are unusual, or atypical. Nearly

all initial microstates are not like that. Nearly all initial microstates lead to equilibrium after

a short while. This is a ‘typicality fact’: a fact about what is typical.

Typicality facts are studied in many areas of science, but they are particularly prominent

in statistical mechanics and quantum mechanics. For instance, Boltzmann discusses a version

of the typicality fact just mentioned: the overwhelming majority of initial conditions of a gas,

he writes, reach equilibrium in a relatively short amount of time (1896/2003, p. 394). On the

basis of his many-worlds interpretation of quantum mechanics, Everett argues that typically,

the probabilistic predictions of the Born rule are valid (1956/2012, p. 123). In their analysis

of Bohmian mechanics, Dürr, Goldstein, and Zanghì show that typically, initial configurations

of the universe lead to empirical distributions that agree with the probabilistic predictions

of the quantum formalism (1992, p. 846). Reitmann (2007) shows that given certain generic

conditions, pure quantum states typically yield more-or-less the same expectation values for

sets of observables which are not too large. Kiessling (2011) shows that for N gravitationally-

interacting bodies confined to the surface of a sphere, Boltzmann’s H functional is minimized

by states which are typical for those N -body systems (in the limit as N approaches infinity).

Tasaki (2016) shows that pure quantum states in the microcanonical energy shell typically

share a particular collection of properties associated with thermal equilibrium.1

These typicality facts are explanatory. The typicality fact about the initial conditions

of gases, for example, explains their thermodynamic behavior (Goldstein, 2001, p. 52). Both

the typicality fact discussed by Everett and the typicality fact discussed by Dürr, Goldstein,

and Zanghì provide explanations of why the frequencies observed in quantum experiments

conform to the probabilities predicted by the Born rule. There is, as Goldstein puts it, a

“logic of appeal to typicality” in scientific explanation (2012, p. 70).

The logic of typicality extends beyond its role in explanation, however. Typicality is

invoked in many different kinds of scientific reasoning: explanation, prediction, evaluation of
1For examples of typicality results in mathematics, see (Kesten, 1980), (Alon et al., 1998), and (Ledoux,

2001).
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hypotheses, and more. But what is the logic of that reasoning?2

Typicality is also invoked in non-rigorous mathematical reasoning. Take Goldbach’s

conjecture,3 which has been shown to hold for all natural numbers less than 1018.4 The set

of integers on which the conjecture has been verified is large but finite, and therefore does

not pass the ‘nearly all’ threshold to be considered typical in the sense described above. But

consider a number theorist whose past experience is such that when a mathematical claim

has been verified on a similarly large sample of natural numbers, that claim has most often

turned out to be true. Based on this experience, the number theorist may feel justified to

conjecture that the claim holds in this specific case. Such judgments are based on assessments

of typicality: they are based on reasoning to the effect that past conjectures which have been

empirically tested to the same degree as Goldbach’s conjecture have typically turned out to

be true. This is a ‘typicality judgment’: a judgment about what is typical.

Typicality judgments are common in science, mathematical conjecture, and everyday

reasoning. They help scientists arrive at hypotheses to test. They help mathematicians posit

conjectures to prove.5 And they help guide reasoning in other domains as well. For example,

consider a prosecutor who attempts to convince a jury of a defendant’s guilt by linking blood

at the crime scene to the defendant. This prosecutor appeals to typicality. For typically,

the presence of blood indicates the defendant’s involvement in the crime. It would be quite

atypical, though not impossible, for the defendant’s blood to be present if the defendant were

in no way involved.
2The notion of typicality has historical roots in the writings of Bernoulli (1713) and Cournot (1843).

Both Bernoulli and Cournot formulated principles of typicality reasoning using the notion of probability, not
typicality. Roughly, they argued that events with very high probability are ‘morally certain’, and events with
very small probability are ‘morally impossible’ (Shafer & Vovk, 2006, p. 72). These principles of reasoning
may be different from the analogous principles that replace the notion of probability with the notion of
typicality, since arguably, probability and typicality are distinct (Goldstein, 2012; Wilhelm, forthcoming).
But regardless, these principles of reasoning are at least direct ancestors of similar principles based on the
notion of typicality.

3Every even integer greater than 2 can be expressed as the sum of two primes.
4Empirical verification of Goldbach’s conjecture is catalogued at http://sweet.ua.pt/tos/goldbach.html.
5Pólya (1954) discussed something like this ‘non-rigorous’ side of mathematics in depth in his two-volume

treatise Mathematics and Plausible Reasoning. Mazur (2012) has also explored the role of plausibility in
mathematical practice.
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Like typicality facts, typicality judgments can figure in our explanations: they can jus-

tify conjectural claims which have not yet been proven, but which there is sufficient evidence

to support. Though Goldbach’s conjecture has remained unresolved for over three centuries,

its plausibility is undisputed. There is lots of empirical evidence in its favor, though a formal

proof remains elusive. Even without a proof, belief in the conjecture seems to be based on

sound reasoning. But what is the logic of that reasoning?

Despite the ubiquity of typicality reasoning, no formal systems for the logic of typical-

ity have been proposed.6 Most research on typicality either (i) proves results about what is

typical – as in quantum mechanics and statistical mechanics – or (ii) explicates the notion of

typicality – as in philosophy.7 There is comparatively little research on the logical principles

which govern reasoning that relies upon typicality facts. There are no rigorous formal lan-

guages designed to model claims about what is and is not typical, or to assess the soundness

of typicality judgments. There is no detailed formal semantic theory and no detailed proof

theory for reasoning about typicality. Of course, there are rigorous formal systems for other

sorts of reasoning. Propositional logic, and first-order logic, are formal systems for deductive

reasoning. Bayesian theory is a formal system for probabilistic reasoning. But there are no

analogous formalisms for typicality reasoning.8

There are at least two other reasons to develop a logical system for typicality reasoning.

First, such a system would unite and systematize the different ways of quantifying typicality:

it would show that the different typicality measures employed by Everett (1956/2012), Dürr

et al. (1992), Reitmann (2007), and others, are species of a common genus. In other words,

a logical system for typicality reasoning would capture the formal unity of a wide variety

of typicality results. It would reveal what many different approaches to typicality have in
6That is, there are no formal systems for our notion of typicality, according to which something is typical

just in case, roughly, nearly all things of a certain sort are a certain way. There are proposed formal
systems for other typicality notions. One notion of typicality, for instance, is given by the notion of ‘normal’:
something is typical just in case it is normal (relative to the entities in some class). See (Booth et at., 2012)
for a logic of this ‘normalcy’ notion of typicality.

7For recent work on the philosophical foundations of typicality, see (Frigg, 2011), (Frigg & Werndl, 2012),
(Werndl, 2013), and (Wilhelm, forthcoming).

8Steps towards a formalism are taken by Goldstein et al. (2010, pp. 3217-3220).
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common. Second, and relatedly, a logical system for typicality reasoning would formulate

the basic logical principles that seem to govern the intuitive notion of typicality. Here is an

example of one such principle: if p^ q is typical then p is typical and q is typical, but if p is

typical and q is typical then it does not follow that p^ q is typical. Here is another: if either

p is typical or q is typical then p_ q is typical, but if p_ q is typical then it does not follow

that either p is typical or q is typical. A logical system for typicality reasoning would be a

rigorous theory of principles which, like these two, govern all rational reasoning that relies

on claims about what is typical.

So in this paper, we present two logical systems for typicality. The first is propositional:

it supplements the standard language of propositional logic with a new sentence operator

‘Typ’. Intuitively, Typppq says that p is typical. The second is type-theoretic: it supplements

the standard language of intuitionistic Martin-Löf type theory (MLTT) (Martin-Löf, 1984)

by introducing a new type former Typ. Intuitively, Typppq is a type corresponding to the

proposition that p is typical, and each term of Typppq represents a justification for the

judgment that p is typical.

In Section 2, we present the propositional formalism for typicality. We introduce the

language, the semantics, and the proof theory for what we call Typicality Propositional Logic

(TPL). We also establish some formal results. In Section 3, we present the type-theoretic

formalism for typicality. We introduce the language of Martin-Löf type theory (MLTT),

along with the semantics and proof theory for what we call Typicality Intuitionistic Logic

(TIL).

2 Typicality Propositional Logic

In this section, we propose a formal logic for TPL. We introduce the language of that

formalism—the basic vocabulary, and the well-formed formulas—in Section 2.1. In Section

2.2, we propose a semantic theory for this language, and we prove some simple yet illuminating
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results. In Section 2.3, we propose a proof theory. In Section 2.4, we show that the proof

theory is sound with respect to the semantic theory. Finally, in Section 2.5, we discuss some

additional features of TPL.

2.1 The Language

TPL is the language of standard propositional logic supplemented with a typicality

operator ‘Typ’. In particular, the logical vocabulary of TPL consists of three symbols: a

binary sentence operator Ñ, a unary sentence operator  , and a unary sentence operator

Typ. The non-logical vocabulary of TPL consists of infinitely many sentence letters and two

bracket symbols: the sentence letters are p, q, and so on, and the bracket symbols are p and

q.

Well-formed formulas in the language of TPL are defined recursively, as follows.

1. Each sentence letter is a well-formed formula.

2. If φ is a well-formed formula, then  φ is a well-formed formula.

3. If φ is a well-formed formula, then Typpφq is a well-formed formula.

4. If φ and ψ are well-formed formulas, then φÑ ψ is a well-formed formula.

5. Nothing else is a well-formed formula.

It follows that all well-formed formulas in the language of propositional logic are well-formed

formulas in the language of TPL.

2.2 The Semantics of TPL

The models of the well-formed formulas of TPL are called ‘TPL universes’. Each TPL

universe is a pair xΓ,Vy, where Γ is a large set and V is a set of truth functions from well-

formed formulas of TPL to t0, 1u. Intuitively, Γ is a set of possible states, or possible worlds,

and V is a set of functions which assign a truth value to each sentence, with 0 representing
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‘false’ and 1 representing ‘true’. For each w P Γ, there is exactly one function fw P V .

Intuitively, fw expresses the facts about true propositions at w: for well-formed formula φ,

for w P Γ, and for fw P V , fwpφq “ 1 says that φ is true at world w.

The rigorous definition of the truth functions proceeds in two steps. First, for each

w P Γ, let gw be a truth function defined over all well-formed formulas of the language PL,

where PL is the standard language for propositional logic. So each gw is just a truth function

of propositional logic.

Second, for each w P Γ, extend gw to a truth function fw defined over all of TPL. The

extension is defined in terms of double recursion: at each step in the recursion, in addition

to defining the truth function fw for that step, a set must also be defined. Roughly put, the

defined set is the set of all elements of Γ at which a certain well-formed formula is true.

More precisely, let S be a σ-algebra over Γ and let τ be a finite, non-zero measure over

S. Fix ε ą 0 such that ε ! 1. Then for each w P Γ, the recursive definition of fw is as follows.

(1) For each well-formed formula φ in the language of PL,

(i) fwpφq “ gwpφq, and

(ii) Γφ “ tw
1 P Γ | fw1pφq “ 1u.

(2) If φ is a well-formed formula in the language of TPL, then

(i) fwp φq “ 1 if and only if fwpφq “ 0, and

(ii) Γ φ “ tw
1 P Γ | fw1pφq “ 0u.

(3) If φ and ψ are well-formed formulas in the language of TPL, then

(i) fwpφÑ ψq “ 1 if and only if fwpφq “ 0 or fwpψq “ 1, and

(ii) ΓφÑψ “ tw
1 P Γ | fw1pφq “ 0 or fw1pψq “ 1u.

(4) If φ is a well-formed formula in the language of TPL, then

(i) fwpTyppφqq “ 1 if and only if there exists a set X P S such that

X Ď Γφ and τpΓzXq
τpΓq

ă ε, and

(ii) ΓTyppφq “ tw
1 P Γ | fw1pTyppφqq “ 1u.

It follows from these clauses that for each well-formed formula φ, Γφ is the set of worlds in Γ
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at which φ is true; that is, Γφ “ tw
1 P Γ | fw1pφq “ 1u. For the purposes of the proof theory

in Section 2.3, say that Y Ď Γ is a ‘typical set’ if and only if there is an X P S such that

X Ď Y and τpΓzXq
τpΓq

ă ε.

Here is an informal description of what these clauses say. According to the first clause,

fw agrees with gw on the formulas of PL. The second clause uses the value of fw on unnegated

formulas in TPL to define the value of fw on negated formulas in TPL. The third clause uses

the value of fw on pairs of formulas in TPL to define the value of fw on conditionals created

out of those formulas in TPL. The fourth clause is more involved: it uses facts about the

measures of sets to define the value of fw on typicality statements in TPL. Intuitively, the

fourth clause says that Typpφq is true at a world if and only if the set of worlds at which

φ holds – that is, the set Γφ – contains a ‘sufficiently large’ set X, where X is ‘sufficiently

large’ if and only if X is measurable and the size of the set of elements not in X (divided by

the size of the set Γ) is very small.

Note that in condition 4(i), the sizes of sets are quantified using a measure. But there

are other ways of quantifying the sizes of sets. For example, a cardinality-theoretic version of

4(i) can be used for the case where Γ is infinite:9 fwpTyppφqq “ 1 if and only if |ΓzΓφ| ă |Γ|.

In other words, φ is typical if and only if the set of  φ worlds has strictly smaller cardinality

than the set of φ worlds.10 For a topological version of 4(i): fwpTyppφqq “ 1 if and only if

ΓzΓφ is meager.11 In other words, put roughly, φ is typical if and only if the set of  φ worlds

is tightly packed, topologically, in Γ. And here is a version of 4(i) related to, but distinct

from, the measure-theoretic version: given ε ą 0 such that ε ! 1, given a field of sets F

whose members are subsets of Γ, and given a finite non-zero finitely additive measure µ on

F , fwpTyppφqq “ 1 if and only if there exists a set X P F such that X Ď Γφ and µpΓzXq
µpΓq

ă ε.

9We stipulate that Γ is infinite because if Γ were finite, then this version of 4(i) would imply that
fwpTyppφqq “ 1 if and only if Γφ is nonempty. But this means that φ is typical if and only if φ is true
in at least one world – and that is not how the intuitive notion of typicality works.

10As discussed in Wilhelm (forthcoming), this quantification of typicality is only suitable for modeling
some typicality claims.

11A set is meager if and only if it can be written as a countable union of nowhere dense sets. A set is
nowhere dense if and only if its closure has empty interior.
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According to condition 4(i), the truth of a typicality statement depends on the value

of ε. The parameter ε serves as a measure of smallness: very roughly, φ is typical if and

only if φ is false at a sufficiently small proportion of worlds, where a proportion of worlds is

‘sufficiently small’ if and only if that proportion is smaller than ε. So different choices of ε

yield different truth conditions for claims about what is typical.

There are roughly two different views of the relationship between ε and the truth condi-

tions for typicality statements. According to one view – call it the ‘context-dependent view’ of

ε – many different values for ε are permissible, and there is a different version of condition 4(i)

for each such value. The correct value for ε—the value, that is, which correctly captures the

truth conditions of typicality statements—is determined by context. But different contexts

can determine different values for ε. For example, consider a context in which physicists are

studying the entropic behavior of gases. These physicists make veridical claims like “Typi-

cally, gases with such-and-such an initial macrostate evolve to a higher-entropy macrostate in

thus-and-so amount of time”. In this context, the value of ε may be as low as 10´100, because

an absolutely massive number of gases exhibit the entropy-increasing behavior in question.

In contrast, consider a context in which biologists are studying the behaviors of cells. These

biologists make veridical claims like “Typically, cells with sodium-potassium pumps transport

such-and-such many sodium ions in thus-and-so amount of time”. In this context, the value

of ε may only be 10´4, because the failure rate of the relevant transport processes is low but

not as low as 10´100.

According to another view – call it the ‘context-independent view’ of ε – only one value

of ε is correct: only one version of condition 4(i) can be used in typicality reasoning. That

value for ε is always the same; it does not vary with context. For example, the value of ε

in the context of physicists studying gases is the same as the value of ε in the context of

biologists studying cells.

We prefer the context-dependent view of ε. Typicality, on our view, is a context-

dependent notion: whether or not something is typical varies with the standards of the

9



context in question. A formal system for typicality should capture that contextual variability.

This does not make TPL any less exact, however; this does not make TPL imprecise. By

invoking the parameter ε, TPL exactly and precisely captures the inexactness and imprecision

which is inherent in the notion of typicality. A formal system which fails to capture the

contextual variability of typicality is not any more exact or precise than TPL. Such a formal

system is, in fact, not a formal system for typicality at all.

But in this paper, for the sake of brevity, we will not explore different ways of varying

the parameter ε. So in the theorems to follow, we will assume that ε has been fixed to some

particular value. We hope that future work will explore the consequences of allowing the

value of ε to vary.12

We now present the account of truth at a world in a TPL universe, an account of truth

in a TPL universe, and an account of logical truth. Let M0 “ xΓ0,V0y be a TPL universe,

let w0 P Γ0 be a world, and let φ be a well-formed formula in the language of TPL. First, φ

is ‘true in M0 at w0’ if and only if fw0pφq “ 1. In symbols: (M0,w0 φ. Second, φ is ‘true in

M0’ if and only if for every w P Γ0, φ is true in M0 at w. In symbols: (M0 φ. Third, φ is

‘logically true’ if and only if for every TPL universe M , φ is true in M . In symbols: ( φ.

Define logical entailment in TPL as follows. Let Σ be a set of well-formed formulas in

the language of TPL. Let M be a TPL universe. Say that ‘Σ logically entails ψ in M ’ if

and only if the following holds: if φ is true in M for each φ P Σ, then ψ is true in M . In

symbols: Σ (M ψ. And say that ‘Σ logically entails ψ’ if and only if for each TPL universe

M , Σ logically entails ψ in M . In symbols: Σ ( ψ.13

12See footnote 13 for one example of how the present theory can be adapted to allow for contextually
variable ε.

13This definition of logical entailment depends upon a specific choice of ε ą 0 such that ε ! 1, since ε was
fixed to a single value for the purposes of the recursive definitions of the functions fw that assign truth values
to sentences at worlds in TPL universes. But this definition of logical entailment can easily be adapted to
allow for multiple values of ε. To do so, simply call this definition—the one which depends upon a fixed ε—an
‘ε-relative’ definition of logical entailment. Then say that the set of sentences Σ logically entails the sentence
ψ if and only if for all ε ą 0 such that ε ă 1

2 , Σ logically entails ψ according to the ε-relative definition of
logical entailment. The choice of 1

2 as an upper bound is not forced: a different number, for instance 1
104 or

1
10100 , could be used instead. But 1

2 seems like the least arbitrary choice for this non-ε-relative definition of
logical entailment. For any other choice, it seems reasonable to ask why ε cannot be just a little bit higher;
and it is not obvious what the answer would be. But clearly, ε cannot be 1

2 or greater: for if something is
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A few simple results will help to clarify the nature of typicality in this semantic theory.

The following lemma shows that typicality statements are ‘all or nothing’: either Typpφq is

true at each world in the universe at issue or Typpφq is false at each world in the universe at

issue.

Lemma 1. Let xΓ,Vy be a TPL universe. For any well-formed formula φ in the language of

TPL, either ΓTyppφq “ Γ or ΓTyppφq “ H.

Proof. Take any well-formed formula φ in the language of TPL. Suppose ΓTyppφq ‰ Γ.

Then there is a world w P Γ such that fwpTyppφqq “ 0. Recall that for any w1 P Γ,

fw1pTyppφqq “ 1 if and only if there exists a set X P S such that X Ď Γφ and τpΓzXq
τpΓq

ă ε. So

since fwpTyppφqq “ 0, there is no set X which satisfies those conditions. Therefore, for every

w1 P Γ, fw1pTyppφqq “ 0. And therefore, ΓTyppφq “ H. So either ΓTyppφq “ Γ or ΓTyppφq “ H.

Lemma 1 justifies the use of the phrase ‘typicality facts’ to refer to typicality statements in

TPL. When a typicality statement holds at some world, it holds at all worlds. If a typicality

statement fails to hold at a world, it fails to hold at all worlds. Therefore, the truth value of

a typicality statement is constant over all worlds in a TPL universe, and is thus a fact about

that universe.

The following theorem shows that iterated typicality claims do not change in truth

value: that is, TyppTyppφqq holds if and only if Typpφq holds.

Theorem 1. For any well-formed formula φ in the language of TPL, for any TPL universe

M “ xΓ,Vy, and for any w P Γ, TyppTyppφqq is true in M at w if and only if Typpφq is true

in M at w.

Proof. By definition, TyppTyppφqq is true in M at w if and only if fwpTyppTyppφqqq “ 1.

Similarly, Typpφq is true in M at w if and only if fwpTyppφqq “ 1. So to establish the

theorem, it suffices to show that fwpTyppTyppφqqq “ fwpTyppφqq.

typical, then at the very least, it must be true more than half of the time.
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By Lemma 1, either ΓTyppφq “ H or ΓTyppφq “ Γ. To start, suppose that ΓTyppφq “ H.

Then for each set X P S such that X Ď ΓTyppφq, X “ H. Therefore, for such an X,

τpΓzXq

τpΓq
“
τpΓzHq

τpΓq

“
τpΓq

τpΓq

“ 1

­ă ε.

And so by definition, fwpTyppTyppφqqq “ 0. In addition, if ΓTyppφq “ H, then fwpTyppφqq “ 0

by definition. Therefore, if ΓTyppφq “ H, then fwpTyppTyppφqqq “ fwpTyppφqq.

Now suppose that ΓTyppφq “ Γ. Then there is a set X P S such that X Ď ΓTyppφq and
τpΓzXq
τpΓq

ă ε; namely, the set X “ Γ. So by definition, fwpTyppTyppφqqq “ 1. In addition, if

ΓTyppφq “ Γ, then fwpTyppφqq “ 1 by definition. So if ΓTyppφq “ Γ, then fwpTyppTyppφqq “

fwpTyppφqq.

Therefore, regardless of what ΓTyppφq is, fwpTyppTyppφqqq “ fwpTyppφqq.

The following corollary establishes the corresponding result for the sets ΓTyppTyppφqq and

ΓTyppφq.

Corollary 1. For any well-formed formula φ in the language of TPL, and for any TPL

universe M “ xΓ,Vy, ΓTyppTyppφqq “ ΓTyppφq.

Proof. By definition, ΓTyppTyppφqq “ tw
1 P Γ | fw1pTyppTyppφqqq “ 1u and ΓTyppφq “ tw

1 P Γ |

fw1pTyppφqq “ 1u. Theorem 1 implies that for each w P Γ, fwpTyppTyppφqqq “ fwpTyppφqq.

Therefore, ΓTyppTyppφqq “ ΓTyppφq.
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2.3 Tableaus for TPL

In this subsection, we propose a proof theory for TPL based on tableaus; call it a

‘TPL proof theory’.14 The method consists of a series of rules for decomposing well-formed

formulas in the language of TPL. The decomposition resembles a tree-like structure; because

of that, tableau proofs are often called ‘proof trees’.

Each line in a proof tree consists of two parts: a formula and an index. The formula

is just a well-formed formula in the language of TPL. The index is a syntactic parameter

that keeps track of certain information about that well-formed formula. Intuitively, the index

specifies the worlds at which the formula is true. There are three different types of indices:

the ‘all’ index, denoted by the symbol a; ‘nearly all’ indices, denoted by symbols like n, n1,

and so on; and ‘world’ indices, denoted by symbols like w, w1, and so on. Intuitively, a line

of the form ‘A, a’ says that A is true at all worlds. A line of the form ‘A, n’ says that there

is a typical set such that A is true at each world in that set: think of n as that typical set’s

name. And a line of the form ‘A,w’ says that A is true at world w.

We now present the decomposition rules for the proof trees. In each rule, A and B are

schematic letters for well-formed formulas of TPL. The first rule is the ‘conditional’ rule:

AÑ B, w

 A, w B, w

Intuitively, interpret this rule as saying that if AÑ B is true at world w, then either  A is

true at w or B is true at w. This rule is, however, purely syntactic. Later we will justify this

interpretation of the syntax. Doing so is the first step towards showing that this TPL proof

theory is sound with respect to the TPL semantic theory discussed in Section 2.2.
14For discussion of tableau methods in propositional logic, first-order logic, and modal logic, see Smullyan

(1968) and Priest (2008).
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The next three rules are ‘negated conditional’ rules:

 pAÑ Bq, a

A, a

 B, a

 pAÑ Bq, n

A, n

 B, n

 pAÑ Bq, w

A, w

 B, w

Intuitively, interpret the rule with index ‘a’ as saying the following: if  pA Ñ Bq is true at

every world, then A and  B are true at every world. Interpret the rule with index ‘n’ as

saying the following: if  pAÑ Bq is true at every world in the typical set named by n, then

A and  B are true at every world in n. And interpret the rule with index ‘w’ as saying the

following: if  pAÑ Bq is true at world w, then A and  B are true at w.

The next three rules are ‘negation’ rules:

  A, a

A, a

  A, n

A, n

  A, w

A, w

Intuitively, interpret the rule with index ‘a’ as saying the following: if   A is true at every

world, then A is true at every world. Interpret the rule with index ‘n’ as saying the following:

if   A is true at every world in the typical set named by n, then A is true at every world in

n. And interpret the rule with index ‘w’ as saying the following: if   A is true at world w,

then A is true at w.

The next three rules are ‘typicality’ rules:

TyppAq, a

A, n1

TyppAq, n

A, n1

TyppAq, w

A, n1
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where in each rule, n1 is a new ‘nearly all’ index, one not used earlier in the tableau. Think

of n1 as naming the set of worlds at which A holds. So intuitively, the first rule says that if

A is typical at each world, then there is a typical set n1 such that A holds at each world in

n1. The second and third rules say something similar, except that they start with slightly

different assumptions: the second starts with the assumption that A is typical at all worlds

in some typical set n, and the third starts with the assumption that A is typical at some

world w.

We require that n1 be a new ‘nearly all’ index—we require, in other words, that n1

not show up earlier in the proof tree—for the same reasons that in the tableau method for

first-order logic, one always uses a new constant symbol ‘c’ when decomposing a formula of

the form Dxφpxq into φpcq.15 TyppAq is, in a sense, an implicitly existential sort of formula:

TyppAq holds in a TPL universe xΓ,Vy if and only if there exists a typical set X Ď Γ such that

A is true at each world in X. So as with other such existential rules in other tableau methods,

we require that the name for the item whose existence is asserted in the decomposition—the

name ‘n’, in this case, which denotes a typical set of worlds such that A is true at each world

in that set—not be associated with any other properties.16

The next three rules are ‘negated typicality’ rules:

 TyppAq, a

w1 P n1

 A, w1

 TyppAq, n

w1 P n1

 A, w1

 TyppAq, w

w1 P n1

 A, w1

where n1 is a ‘nearly all’ index, and w1 is a ‘world’ index which was not invoked earlier in
15For a nice discussion, see Smullyan (1968, p. 54).
16If we did not require this, then the tableau method would not match the semantics of Section 2.2 in the

right way. Proof trees would say more than is licensed by the semantics for TPL. For instance, suppose that
some other typical set n‹ is mentioned earlier in the proof tree, and B is true at each n‹. We do not yet
know whether or not A is also true at each world in n‹. So if we decomposed the line ‘TyppAq, a’ as A,n‹, we
would be saying something stronger than, at this point in the tree, we legitimately can. We would be saying,
for example, that A and B are both true at each world in n‹. But we do not know that. We only know that
A is typical and that B is typical: we do not know that their conjunction is typical (indeed, it may not be).
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the proof. So intuitively, the first rule says that if it is not the case that A is typical at each

world, then for any typical set n1 there is a world in n1 such that A is false at that world. The

second and third rules say something similar, except that they start with slightly different

assumptions: the second starts with the assumption that it is not the case that A is typical

at all worlds in some typical set n, and the third starts with the assumption that it is not

the case that A is typical in some world w.

Note that in this rule, the index n1 may or may not have appeared earlier on. In fact,

for various pragmatic reasons, this rule should often be applied whenever a new ‘nearly all’

index appears in the proof tree. For instance, if the tree features the three lines ‘B, n1’,

‘C, n2’, and ‘ TyppAq, a’, then apply the first negated typicality rule twice: once for the case

where n1 “ n1, and once for the case where n1 “ n2.17

In addition, note that the index w1 must not have shown up earlier in the proof tree. The

reason is that  TyppAq contains an implicit existential:  TyppAq holds in a TPL universe

xΓ,Vy if and only if for each typical set X Ď Γ, there exists a world w1 P X such that A is

false at w1.18 So as with other such existential rules in other tableau methods, we require

that the name for the item whose existence is asserted in the decomposition—the name ‘w1’,

in this case, which denotes a world in Γ—not be associated with any other properties.

The remaining rules concern indices in particular. The first two are ‘all-to-less’ index

rules:

A, a

A, n

A, a

A, w

17Whether or not this rule should always be applied for each new ‘nearly all’ index will depend, ultimately,
on pragmatic considerations. Some tableau proofs, for some logical systems, can go on forever: see the
discussion by Smullyan (1968). So for pragmatic reasons, this rule should not be applied in a way that, in
conjunction with the other rules, generates an infinite tree – if at all possible.

18For if there were a typical set X in which no such world existed – that is, where A was true at each world
in X – then TyppAq would be true in the TPL universe in question.
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where n is a ‘nearly all’ index and w is a ‘world’ index. Intuitively, the first all-to-less index

rule says that if A holds at every world, then for any typical set n, A holds at each world in n.

The second all-to-less index rule says that if A holds at every world, then for any particular

world w, A holds at w.

The next rule is an ‘instantiation’ index rule:

A, n

w P n

A, w

Intuitively, the instantiation index rule says that if A is true at each world in the typical set

n, and if w is in n, then A is true at w.

The final rule is the ‘world introduction’ rule:

w P n

where n is a ‘nearly all’ index which may or may not have been invoked earlier in the proof,

and w is a ‘world’ index which was not invoked earlier in the proof. Intuitively, the world

introduction rule says that for any given typical set n, there is a world w in n.

It will be helpful to have some terminology for various features of proof trees. In general,

proof trees have structures like the following:

17



¨

¨

¨

¨

¨

¨ ¨

The dots in the above image, which in TPL proof trees consist of a collection of pairs of

formulas and indices, are called ‘nodes’. The ‘initial’ node is the one at the tree’s top.

A vertical line between two nodes indicates that one of the decomposition rules has been

applied to the node at the top, yielding the node at the bottom. A ‘branch’ of a proof tree

is a path from the initial node to a lower node. A ‘closed’ branch is a branch that contains

two contradictory formulas with the same index: for instance, a branch that contains ‘A,w’

and ‘ A,w’ is closed. An ‘open’ branch is a branch which is not closed. A ‘closed’ tree is a

proof tree such that every branch is closed. An ‘open’ tree is a proof tree which is not closed.

Let us now define deductive TPL proofs. Let ψ, φ1, φ2, . . . , φn be well-formed formulas

in the language of TPL. Say that ψ is deducible from φ1, φ2, . . . , φn if and only if there is a

proof tree p which satisfies the following conditions.

1. The initial node of p consists of the following collection of pairs of formulas and

indices:
φ1, a

φ2, a

...

φn, a
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 ψ,w

2. The tree p is closed.

Let φ1, φ2, . . . , φn $ ψ denote that ψ is deducible from φ1, φ2, . . . , φn. More generally, if Σ is

a finite set of well-formed formulas, let Σ $ ψ denote that φ is deducible from the formulas

in Σ. If φ is a well-formed formula in the language of TPL, then φ is a ‘theorem’ if and

only if $ φ; that is, φ is a theorem if and only if φ can be deduced without invoking any

assumptions.

As an example, let us prove that p $ Typppq. Here is the proof tree. The ˆ at the

bottom indicates that the branch is closed.

p, a

 Typppq, w

w1 P n

 p, w1

p, w1

ˆ

This tree was obtained by first applying the negated typicality rule for a world index to the

second line, and then applying the all-to-less rule for a world index to the first line. The

proof tree shows that if p is true at every world, and if Typppq is false at some world, then

a contradiction obtains. And intuitively, that is correct. For if something is true at every

world, then that something must be typical at every world.

As another example, let us prove that pÑ q, Typppq $ Typpqq. Here is the proof tree.
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pÑ q, a

Typppq, a

 Typpqq, w

p, n

pÑ q, n

w1 P n

 q, w1

p, w1

pÑ q, w1

 p, w1

ˆ

q, w1

ˆ

This tree shows that if p Ñ q is true at every world, if Typppq is true at every world, and

if Typpqq is false at some world, then a contradiction is reached. That is, if p Ñ q is true

at every world, and if Typppq is true at every world, then Typpqq must also be true at every

world.

As a final example, let us see why & pÑ Typppq. Here is the relevant tree.
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 ppÑ Typppqq, w

p, w

 Typppq, w

w1 P n

 p, w1

The tree is not closed. Of course, more rules could still be applied. We could apply the

negated typicality rule for a world index again, or we could apply the world introduction

rule. But clearly, repeated applications of these rules will never close the tree. So there is no

proof of pÑ Typppq. And that is intuitively the right result, since the formula ‘pÑ Typppq’

need not be true at every world in every TPL universe. Consider a TPL universe where p

is false at all worlds but one. Then p Ñ Typppq is false at that world: for at that world, p

is true and Typppq is false. Therefore, p Ñ Typppq is not true in this TPL universe. And

therefore, pÑ Typppq is not valid.

2.4 Soundness

When explaining the intuitions motivating the decomposition rules, we often invoked

semantic notions. In this section, we precisify the relationship between the proof theory of

Section 2.3 and the semantic theory of Section 2.2. In particular, we show that the proof

theory is sound with respect to the semantic theory.

To start, consider the following definition.

Definition 1 (Faithfulness). Let M “ xΓ,Vy be a TPL universe, and let b be any branch of

a tableau. Say that M is ‘faithful’ to b if and only if there is a function f which takes each
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world index w on b to a world fpwq P Γ, and takes each nearly all index n on b to a typical

set fpnq Ď Γ, such that the following conditions hold.

1. For every node of the form A, a on b, A is true at each world in Γ.

2. For every node of the form A, n on b, A is true at each world in fpnq.

3. For every node of the form A,w on b, A is true at fpwq.

4. For every node of the form w P n on b, fpwq P fpnq.

The following lemma will help to prove the soundness of the tableau method. It uses the

notion of faithfulness to show that the decomposition rules of the proof theory preserve truth.

Lemma 2. Let b be a branch of a tableau, and let M “ xΓ,Vy be a TPL universe. If M

is faithful to b, and a tableau rule is applied to b, then this tableau rule yields at least one

extended branch to which M is faithful.

Proof. Let f be the function which witnesses the fact thatM is faithful to b. The proof of this

lemma proceeds by checking every case: we show that for each tableau rule, an application

of that tableau rule yields a branch b1 to which M is faithful.

Suppose we apply the conditional rule for A Ñ B,w to b. Since A Ñ B,w is on b,

A Ñ B is true at fpwq. So either  A is true at fpwq or B is true at fpwq. So for at least

one of these extensions of b—the one that extends to the left in the tree diagram, which has

line  A,w; or the one that extends to the right in the tree diagram, which has line B,w—M

is faithful to that extension.

Suppose we apply the negated conditional rule for  pA Ñ Bq, a to b: the resulting

branch b1 has all the lines of b as well as the lines A, a and  B, a. Since  pA Ñ Bq, a is on

b and M is faithful to b,  pAÑ Bq is true at each world in Γ. So A is true at each world in

Γ and  B is true at each world in Γ. Therefore, M is faithful to b1. Similarly, suppose we

apply the negated conditional rule for  pAÑ Bq, n to b: the resulting branch b1 has all the

lines of b as well as the lines A, n and  B, n. Since  pAÑ Bq, n is on b and M is faithful to

b,  pAÑ Bq is true at each world in fpnq. So A is true at each world in fpnq and  B is true
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at each world in fpnq. Therefore, M is faithful to b1. Finally, suppose we apply the negated

conditional rule for  pAÑ Bq, w to b: the resulting branch b1 has all the lines of b as well as

the lines A,w and  B,w. Since  pA Ñ Bq, w is on b and M is faithful to b,  pA Ñ Bq is

true at fpwq. So A is true at fpwq and  B is true at fpwq. Therefore, M is faithful to b1.

Suppose we apply the negation rule for   A, a to b: the resulting branch b1 has all the

lines of b as well as the line A, a. Since   A, a is on b and M is faithful to b,   A is true

at each world in Γ. So A is true at each world in Γ. Therefore, M is faithful to b1. Similarly,

suppose we apply the rule for   A, n to b: the resulting branch b1 has all the lines of b as

well as the line A, n. Since   A, n is on b and M is faithful to b,   A is true at each world

in fpnq. So A is true at each world in fpnq. Therefore, M is faithful to b1. Finally, suppose

we apply the rule for   A,w to b: the resulting branch b1 has all the lines of b as well as the

line A,w. Since   A,w is on b and M is faithful to b,   A,w is true at fpwq. So A is true

at fpwq. Therefore, M is faithful to b1.

Suppose we apply the typicality rule for TyppAq, a to b: the resulting branch b1 has all

the lines of b as well as the line A, n1, where n1 is a ‘nearly all’ index which does not appear in

b. Since TyppAq, a is on b, TyppAq is true at each world in Γ. So there is a typical set X Ď Γ

such that A is true at each world in X. Extend f to a function f 1 as follows: for all w in the

domain of f , f 1pwq “ fpwq; for all n in the domain of f , f 1pnq “ fpnq; and f 1pn1q “ X.19 By

definition 1, M is faithful to b1: that faithfulness is witnessed by f 1.

Now suppose we apply the typicality rule for TyppAq, n to b: the resulting branch b1

has all the lines of b as well as the line A, n1, where n1 is a ‘nearly all’ index which does not

appear in b. Since TyppAq, n is on b and M is faithful to b, TyppAq is true at each world in

some typical set Y Ď Γ. Lemma 1, in conjunction with the fact that Y is nonempty, implies

that TyppAq is true at each world in Γ. So by the exact same reasoning as before, M is

faithful to b1.
19This last clause uses the fact that n1 is a new ‘nearly all’ index, one which does not appear earlier on

b1; that is, n1 is a ‘nearly all’ index which does not show up on b. For if n1 did show up on b, then n1 would
already be in the domain of f , so we would have to set f 1pn1q “ fpn1q. That is, we would not be free to set
f 1pn1q “ X.
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Similarly, suppose we apply the typicality rule for TyppAq, w to b: the resulting branch

b1 has all the lines of b as well as the line A, n1, where n1 is a ‘nearly all’ index which does not

appear in b. Since TyppAq, w is on b and M is faithful to b, TyppAq is true at world w. So

once again, Lemma 1 implies that TyppAq is true at each world in Γ. And so by the exact

same reasoning as before, M is faithful to b1.

Suppose we apply the negated typicality rule for  TyppAq, a to b: the resulting branch

b1 has all the lines of b as well as the two lines w1 P n1 and  A,w1, where w1 is a ‘world’ index

which does not show up on b and n1 is a ‘nearly all’ index which may or may not show up

on b. Suppose n1 shows up earlier on b. Then fpn1q is already defined. Since  TyppAq, a is

on b, A is false at some world q in fpn1q. For if A were true at each world in fpn1q, then by

condition 4(i) of the recursive definition of truth functions in Section 2.2, and by Lemma 1,

TyppAq would be true at each world in Γ. Extend f to a function f 1 as follows: for all n in

the domain of f , f 1pnq “ fpnq; for all w in the domain of f , f 1pwq “ fpwq; and f 1pw1q “ q.

Then M is faithful to b1, as witnessed by f 1. Now suppose that n1 does not show up earlier

on b. Since  TyppAq, a is on b, Lemma 1 implies that TyppAq is false at each world in Γ.

So take any typical set X Ď Γ. As before, since TyppAq is false at each world in Γ, there

must be a world q in X at which A is false. Extend f to a function f 1 as follows: for all n in

the domain of f , f 1pnq “ fpnq; for all w in the domain of f , f 1pwq “ fpwq; f 1pn1q “ X; and

f 1pw1q “ q. Then M is faithful to b1, as witnessed by f 1.

Because of lemma 1, the same line of argument works for the negated typicality rules

for  TyppAq, n and  TyppAq, w. So we do not present those arguments here. In each case,

the conclusion is that M is faithful to the extension of b.

Suppose we apply the first all-to-less index rule for A, a to b: the resulting branch b1

has all the lines of b as well as the line A, n. If n shows up on b, then fpnq is already defined;

fpnq “ Y , say, where Y Ď Γ is a typical set. Since A, a is on b and M is faithful to b, A is

true at each world in Γ. So A is true at each world in Y , and therefore, M is faithful to b1.

If n does not show up on b, then take any typical set X Ď Γ. Extend f to a function f 1 as
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follows: for all n in the domain of f , f 1pnq “ fpnq; for all w in the domain of f , f 1pwq “ fpwq;

and f 1pn1q “ X. By definition 1, M is faithful to b1: that faithfulness is witnessed by f 1.

Similarly, suppose we apply the second all-to-less rule for A, a to b: the resulting branch

b1 has all the lines of b as well as the line A,w. If w shows up earlier on b, then fpwq is already

defined. So fpwq “ q, say, where q P Γ. And since A, a is on b, A is true at each world in

Γ. So A is true at q, and therefore, M is faithful to b1. If w does not show up earlier on b,

then pick a world q P Γ. Extend f to a function f 1 as follows: for all n in the domain of f ,

f 1pnq “ fpnq; for all w1 in the domain of f , f 1pw1q “ fpw1q; and f 1pwq “ q. By definition 1,

M is faithful to b1: that faithfulness is witnessed by f 1.

Suppose we apply the instantiation rule for A, n and w P n to b: the resulting branch

b1 has all the lines of b as well as the line A,w. Since A, n is true on b and M is faithful to b,

A is true at each world in n. Since f witnesses the fact that M is faithful to b, fpwq P fpnq.

Therefore, A is true at fpwq. So M is faithful to b1.

Finally, suppose we apply the world introduction rule to b: the resulting branch b1

has all the lines of b as well as the line w P n, where n is a ‘nearly all’ index that may or

may not appear earlier on b and w is a ‘world’ index which does not show up earlier on b.

Suppose that n appears earlier on b. Then note that if fpnq is empty, then τpΓzfpnqq
τpΓq

“ 1 ­ă ε,

contradiction. Thus, fpnq is nonempty. So extend f to f 1 as follows: for all n‹ in the domain

of f , f 1pn‹q “ fpn‹q; for all w1 in the domain of f , f 1pw1q “ fpw1q; and f 1pwq is some chosen

element of fpnq. Therefore, M is faithful to b1: that faithfulness is witnessed by f 1. Now

suppose that n does not appear earlier on b. Then pick a typical set X Ď Γ, and extend f

to f 1 as follows: for all n‹ in the domain of f , f 1pn‹q “ fpn‹q; for all w1 in the domain of f ,

f 1pw1q “ fpw1q; f 1pnq “ X; and f 1pwq is some chosen element of f 1pnq.

Now for the proof of soundness.

Theorem 2 (Soundness). If φ1, φ2, . . . , φn $ ψ, then φ1, φ2, . . . , φn ( ψ.
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Proof. The proof establishes the contrapositve. So suppose that φ1, φ2, . . . , φn * ψ. Then

there is a TPL universe M “ xΓ,Vy such that (M φ1,(M φ2, . . . ,(M φn, but for some world

w P Γ, (M,w  ψ. Consider a tableau with φ1, φ2, . . . , φn, ψ at its start. Since M models

φ1, φ2, . . . , φn, ψ, M is faithful to this initial branch: the witnessing function f maps the

world index for  ψ in the initial node of this tableau to the world w. By lemma 2, every

application of a tableau rule to this initial branch yields at least one extended branch to

which M is faithful. So there is no finite sequence of applications of tableau rules to this

initial branch which closes the whole tree. So φ1, φ2, . . . , φn & ψ.

2.5 Additional Results

In this subsection, we present a few more facts about TPL. In Section 2.5.1, we establish

some simple results about the typicality of conjunctions and disjunctions. In Section 2.5.2,

we establish two partial deduction theorems, one syntactic and one semantic. In Section

2.5.3, we outline an important difference between TPL and standard systems of modal logic.

2.5.1 Conjunction and Disjunction

In this subsection, we present some results concerning typicality statements about con-

junction and disjunction. As usual, define A ^ B as  pA Ñ  Bq, and define A _ B and

 A Ñ B. It is straightforward to show that for any TPL universe xΓ,Vy, any world w P Γ,

and any well-formed formulas A and B, fwpA ^ Bq “ 1 if and only if fwpAq “ 1 and

fwpBq “ 1, and fwpA_Bq “ 1 if and only if fwpAq “ 1 or fwpBq “ 1.

The typicality results about conjunction and disjunction are as follows.

Theorem 3. Let φ and ψ be well-formed formulas of TPL. Then the following two conditions

hold.

1. Typpφ^ ψq ( Typpφq ^ Typpψq.
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2. Typpφq _ Typpψq ( Typpφ_ ψq.

Proof. To begin, let us establish condition 1. LetM “ xΓ,Vy be a TPL universe, and suppose

that Typpφ^ ψq is true in M . Take any w P Γ. Since Typpφ^ ψq is true in M , Typpφ^ ψq

is true at w. So by the recursive definition of truth in Section 2.2, there is a set X P S such

that X Ď Γφ^ψ and τpΓzXq
τpΓq

ă ε. For each w1 P Γφ^ψ, w1 P Γφ and w1 P Γψ, since if φ ^ ψ is

true at w1 then φ is true at w1 and ψ is true at w1. Therefore, Γφ^ψ Ď Γφ and Γφ^ψ Ď Γψ. It

follows that X Ď Γφ and X Ď Γψ. Therefore, by the recursive definition of truth in Section

2.2, Typpφq is true at w and Typpψq is true at w. So Lemma 1 implies that both Typpφq

and Typpψq are true at each world in M . Therefore, Typpφq ^ Typpψq is true in M . And

therefore, Typpφ^ ψq ( Typpφq ^ Typpψq.

Now for condition 2. Let M “ xΓ,Vy be a TPL universe, and suppose that Typpφq _

Typpψq is true in M . Take any w P Γ. Since Typpφ _ ψq is true in M , Typpφq _ Typpψq is

true at w. So either Typpφq is true at w or Typpψq is true at w. Without loss of generality,

suppose Typpφq is true at w. Then by the recursive definition of truth in Section 2.2, there

is a set X P S such that X Ď Γφ and τpΓzXq
τpΓq

ă ε. For each w1 P Γφ, w1 P Γφ_ψ, since if φ

is true at w1 then φ _ ψ is true at w1. Therefore, Γφ Ď Γφ_ψ. It follows that X Ď Γφ_ψ.

Therefore, by the recursive definition of truth in Section 2.2, Typpφ _ ψq is true at w. So

Lemma 1 implies that Typpφ _ ψq is true at each world in M . Therefore, Typpφ _ ψq is

true in M . The same conclusion results if Typpψq, rather than Typpφq, is true at w. And

therefore, Typpφq _ Typpψq ( Typpφ_ ψq.

The reverse implications do not always hold: that is, Typpφq ^ Typpψq * Typpφ^ ψq,

and Typpφ_ψq * Typpφq_Typpψq. To see why Typpφq^Typpψq does not imply Typpφ^ψq,

consider a TPL universe M “ xΓ,Vy that satisfies the following four conditions. First, Γ

contains 100 worlds. Second, ε “ 1
10

and τ is the counting measure. Third, suppose that

sentence letter p is true at 91 worlds. Fourth, suppose that sentence letter q is true at exactly

90 of the worlds at which p is true, and q is true at exactly one of the worlds at which p is
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false. Then Typppq is true at each world in Γ: this follows from the fact that Γp contains

exactly 91 worlds, and so τpΓzΓpq

τpΓq
“ 9

100
ă 1

10
“ ε. For analogous reasons, Typpqq is true at

each world in Γ. Therefore, Typppq ^ Typpqq is true in M . But Γp^q contains exactly 90

worlds, so τpΓzΓp^qq

τpΓq
“ 10

100
“ 1

10
­ă ε. It follows that Typpp^ qq is not true at any world in M ,

and thus, that Typpp^ qq is false in M . Therefore, Typpφq ^ Typpψq * Typpφ^ ψq.

To see why Typpφ _ ψq does not imply Typpφq _ Typpψq, consider a TPL universe

M “ xΓ,Vy that satisfies the following four conditions. First, Γ contains 100 worlds. Second,

ε “ 1
10

and τ is the counting measure. Third, suppose that sentence letter p is true at 50

worlds. Fourth, suppose that sentence letter q is true at all and only the worlds at which

p is false. Then Typpp _ qq is true at each world in Γ: this follows from the fact that Γp_q

contains all 100 worlds, and so τpΓzΓp_qq

τpΓq
“ 0

100
“ 0 ă ε. But Γp contains exactly 50 worlds,

and so τpΓzΓpq

τpΓq
“ 50

100
“ 1

2
­ă ε. It follows that Typppq is false at each world in Γ. For analogous

reasons, Typpqq is false at each world in Γ. Thus, Typppq _ Typpqq is false at each world in

Γ, so Typppq _ Typpqq is false in M . And therefore, Typpφ_ ψq * Typpφq _ Typpψq.

2.5.2 Deduction Theorems

The deduction theorem of propositional logic says that for any finite set of well-formed

formulas Σ, and for any well-formed formulas φ and ψ, Σ $ φ Ñ ψ if and only if Σ, φ $ ψ.

The semantic deduction theorem of propositional logic is similar: for any finite set of well-

formed formulas Σ, and for any well-formed formulas φ and ψ, Σ ( φ Ñ ψ if and only if

Σ, φ ( ψ.

The left-to-right direction of each biconditional holds in TPL. The right-to-left direction

of each biconditional, however, does not. Let us see why.

To start, consider the deduction theorem for $.

Theorem 4 (Partial Deduction Theorem). Let Σ be a finite set of well-formed formulas of

TPL. Let φ and ψ be well-formed formulas of TPL. If Σ $ φÑ ψ then Σ, φ $ ψ.

Proof. Let Σ “ tσ1, σ2, . . . , σnu. Suppose Σ $ φ Ñ ψ. Then there is a closed tree whose
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initial node consists of the lines σi, a (1 ď i ď n) along with the line  pφ Ñ ψq, w; call this

tree p.

Consider a tree p1 whose initial node consists of the lines σi, a (1 ď i ď n) along with

the line φ, a and the line  ψ,w. To complete the proof of this theorem, we explain how

to decompose these initial lines of p1 to close each branch. The decompositions depend on

exactly how branches are closed in p. Put roughly, any way that p reaches a contradiction

can be reached by p1, because the decomposition of the line  pφ Ñ ψq, w is already ‘built

into’ the initial node of p1. But to be completely rigorous, we must check all the possible

cases: we must check all the ways that a branch of p might use the line  pφÑ ψq, w to reach

a contradiction.

Suppose p reaches a contradiction on a branch b without decomposing the line  pφÑ

ψq, w. Then either p reaches that contradiction by producing a line of the form φ Ñ ψ,w

from the σi, a lines, or p reaches that contradiction without using the line  pφ Ñ ψq, w at

all. In the latter case, the same contradiction can be reached on a corresponding branch b1 in

p1 by applying the exact same rules in the exact same way. In the former case, it is possible

to create a pair of branches in p1 that correspond to b, both of which close, by doing the

following: apply the exact same rules in the exact same way as in p to derive φ Ñ ψ,w;

use the conditional rule to create a  φ,w branch b1 and a ψ,w branch b2; use the second

all-to-less index rule to decompose the line φ, a in the initial node to φ,w on b1. Note that

both of the newly-created branches contain a contradiction: b1 contains lines φ,w and  φ,w,

and b2 contains lines ψ,w and  ψ,w.20 So both branches close.

Alternatively, suppose p1 reaches a contradiction on a branch b by decomposing the line

 pφÑ ψq, w into the pair of lines φ,w and  ψ,w via the ‘world’ index negated conditional

rule. Then the same contradiction can be reached on a corresponding branch b1 in p1, in the

following way. First, apply the exact same rules in the exact same way as in p – apart from

that decomposition of initial line  pφ Ñ ψq, w of course, since that initial line in p is not
20The line  ψ,w is in the initial node of p1.
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an initial line in p1. Second, apply the second all-to-less index rule to decompose the line

φ, a in the initial node of p1 to get the line φ,w. Then b1 has both φ,w and  ψ,w on it,

just as b does. So the contradiction is reached on b1 in just the same way that it is reached on b.

The other direction of this theorem does not hold: it is not the case that if Σ, φ $ ψ

then Σ $ φ Ñ ψ. A counterexample has already been given. As shown in Section 2.3,

p $ Typppq, but & pÑ Typppq.

Let us now consider the deduction theorem for (.

Theorem 5 (Partial Semantic Deduction Theorem). Let σ be a finite set of well-formed

formulas of TPL. Let φ and ψ be well-formed formulas of TPL. If Σ ( φ Ñ ψ then

Σ, φ ( ψ.

Proof. Let Σ “ tσ1, σ2, . . . , σnu. Let M “ xΓ,Vy be a TPL universe such that σ1, σ2, . . . , σn,

and φ are true in M . Suppose Σ ( φ Ñ ψ. Then φ Ñ ψ is true at each world in Γ. Take

w P Γ. Then φ and φ Ñ ψ are both true at w. Therefore, ψ is true at w as well. Since this

holds for each w P Γ, ψ is true in M . And since this holds for arbitrary M , it follows that

Σ, φ ( ψ.

The other direction of this theorem does not hold: it is not the case that if Σ, φ ( ψ

then Σ ( φ Ñ ψ. For example, note that p ( Typppq: this holds because for any TPL

universe M “ xΓ,Vy, if (M p—that is, if p is true at each w P Γ—then tw P Γ |(M,w pu “ Γ,

and so Typppq is true at each w P Γ. But * p Ñ Typppq. To see why, let Γ be a large

set, let M “ xΓ,Vy be an TPL universe, and suppose p is true at just one world w P Γ.

Then it is not the case that Typppq is true in M . So (M,w p but *M,w Typppq. Therefore,

*M,w pÑ Typppq, and so * pÑ Typppq.
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2.5.3 Modal Logic and TPL

In this subsection, we briefly discuss an important difference between TPL and modal

logic. The typicality operator Typ is substantially different from the necessity operator 2.

Modal logics generally adopt the K-axiom schema: 2pA Ñ Bq Ñ p2A Ñ 2Bq. The

corresponding schema for TPL would be: TyppA Ñ Bq Ñ pTyppAq Ñ TyppBqq. But it

can be shown that instances of this schema are false in some TPL universes. Thus, TPL is

different in kind from the main systems of modal logic.

As an example of the falsity of schema TyppA Ñ Bq Ñ pTyppAq Ñ TyppBqq in some

cases, consider the well-formed formula Typpp Ñ qq Ñ pTypppq Ñ Typpqqq. And consider

the following TPL universe xΓ,Vy. Γ contains 100 worlds. At 91 of those worlds, p is true.

Of those 91 worlds, q is true at exactly 82 of them. In addition, q is false at each of the

9 worlds at which p is false. From all this, it follows that p Ñ q is true at exactly 91

worlds: it is true at each of the 82 worlds at which q is true, it is true at each of the 9

worlds at which p is false, and it is false at the 9 worlds where p is true but q is false. Let

ε “ 1
10
, and let τ be the counting measure. Then τpΓzΓpÑqq

τpΓq
“ 9

100
ă 1

10
“ ε, so Typpp Ñ qq

is true at each world in Γ. Similarly, τpΓzΓpq

τpΓq
“ 9

100
ă 1

10
“ ε, so Typppq is true at each

world in Γ. But τpΓzΓqq

τpΓq
“ 18

100
­ă 1

10
“ ε, so Typpqq is false at each world in Γ. Therefore,

TypppÑ qq Ñ pTypppq Ñ Typpqqq is false in xΓ,Vy.

This is a feature of TPL, not a bug. The K-axiom makes intuitive sense in modal

logic: intuitively, it says that if p Ñ q holds at each world, and if p holds at each world,

then q holds at each world. But the corresponding axiom for typicality is overly strong, since

typical statements need not hold everywhere. Indeed, typical statements are generally liable

to exceptions: typicality is nearly all, not absolutely all. So if pÑ q is typical and p is typical,

it follows that p Ñ q is true at nearly all worlds, and it follows that p is true at nearly all

worlds. But since p Ñ q and p may not be true at all the same worlds, it does not follow

that q is true at nearly all worlds. So there may not be enough q worlds for q to be typical.
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3 Typicality Intuitionistic Logic

In this section, we describe an intuitionistic logic for typicality, which we call ‘typicality

intuitionistic logic’, or TIL. To contrast TIL with TPL, we note at the outset a shift in

perspective from the impersonal and objective interpretation of TPL using sets of possible

worlds (Section 2) to the personal and subjective interpretation of TIL using sets of ‘credal

states’ (below).21 It is important not to confuse the credal states discussed in this section

with the physical states (i.e., quantum states, microstates, or generically ‘states of the world’)

discussed in the previous. Whereas the states of the previous section are objective properties,

those of the current reflect subjective dispositions toward claims. These dispositions guide

an agent’s judgment about what is true and what is typical.

Recall that in TPL, we associate each well-formed formula φ to the set of possible

worlds Γφ at which φ holds. In this interpretation, when a statement holds at a world, it is a

fact of that world, and the formalism of TPL makes precise how the notion of typicality can

be integrated into such an outlook. In particular, if a statement holds at a sufficiently large

subset of possible worlds, then the typicality of that statement is a fact of every world in the

universe.

In TIL, on the other hand, when a credence assigns maximal belief to a statement, an

agent with that credence is justified in making a judgment that the claim holds, regardless

of whether or not it actually does. Thus, in the alternative formalism given below, when

a credence assigns a sufficiently large degree of belief to a statement, an agent with that

credence is justified in make a judgment that the claim is typical. The validity of all such

judgments is determined not by the actual states of the world, which are unknown to the

subject making the judgments, but rather by the context within which the judgment is being

made. In proposed formalism, we interpret this notion of context as a constraint on the
21For our purposes, a credal state is a probability space pΩ,F , νq with ν representing the credences of a

rational agent regarding the measurable subsets in F . It is assumed for the purposes of this discussion that
each subset in F represents a proposition in TPL.
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possible credal states of the agent making the judgment. The semantic difference between

possible worlds and possible credal states in the two formalisms mirrors the philosophical

distinction between ‘typicality facts’ and ‘typicality judgments’.

3.1 The Language

To define the language of TIL we extend a fragment of the non-dependent version of

intuitionistic Martin-Löf type theory (MLTT) (Martin-Löf, 1985) by specifying rules for an

additional typicality type former Typ. The syntactic rules for the Typ-type specified below

are a modification of an earlier development by Crane to append a probability type (denoted

Prob) to the syntax of MLTT. See Crane (2018) for further details.

For clarity, we reserve capital Greek, lowercase Greek, and lowercase Roman letters to

represent the different primitive notions of context, types, and terms, respectively. The basic

components of the language are called judgments, each of which has the form of one of the

following three primitive expressions:22

Formal Natural language description

∆ ctx ∆ is a well-formed context

φ : Type φ is a type

a : φ a is a term of type φ

Importantly, the syntax of MLTT does not permit ‘untyped’ statements, e.g., it is meaning-

less to refer to a term without reference to its type. In the preferred propositions-as-types

interpretation we appeal to below, a judgment of the form φ : Type is interpreted to mean

that φ is a proposition, and a : φ is interpreted to mean that a is a proof of the proposition

φ (Curry and Feys, 1959; Howard, 1969). When understood in this light, the rules of MLTT

presented below can be understood as an algorithmic prescription for how to prove compound
22The full syntax of MLTT has two additional primitive notions of ‘judgmental equality’ which play no

substantive role in our treatment below and are thus omitted.
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propositions, as we illustrate below in the case of the product type.23

In MLTT, and thus in TIL, all judgments are made in a specific context and are

expressed in the form
context $ judgment

∆ $ J , (1)

where J has the form of one of the above primitive judgments and ∆ is a finite list of the

form
a1 : φ1, . . . , an : φn.

The statement in (1) can be interpreted pre-formally to mean that the judgment J on the

right is made in the context ∆ on the left, where a context consists of a string of prior

judgments about types φ1, . . . , φn.

From these primitive elements, the syntax of MLTT is built by specifying a collection

of rules for how to derive new judgments from old. In the non-dependent version of MLTT

featured here, these derived judgments correspond to the non-logical vocabulary for con-

structing the ˆ-type, `-type, and 0-type, For example, the product (ˆ) type is defined by

the following rules.

∆ $ φ : Type ∆ $ ψ : Type

∆ $ φˆ ψ : Type

(ˆ-form)

This formation rule says that given two types φ and ψ a new type can be formed, denoted

φ ˆ ψ. This is akin to saying that φ ˆ ψ is a ‘well-formed formula’ in the language of

MLTT, or more appropriately that φ ˆ ψ is a ‘well-formed type’ in the context ∆. In the

propositions-as-types interpretation, this rule corresponds to the conjunction formation rule

in proposition logic, by which two well-formed formulas φ and ψ in PL can be combined to

another well-formed formula φ^ ψ in PL.
23With this understanding of ‘terms’ as ‘proofs’, the meaninglessness of untyped statements, e.g., let ‘a’

be a term, becomes apparent; for if we interpret terms as proofs, the statement “let a be a proof” leaves
ambiguous what it is that a is a proof of.
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∆ $ φ : Type ∆ $ ψ : Type

∆ $ a : φ ∆ $ b : ψ

∆ $ pa, bq : φˆ ψ

(ˆ-intro)

This introduction rule describes how terms of the product type φ ˆ ψ are constructed (or

introduced) by combining terms a : φ and b : ψ to form pa, bq : φ ˆ ψ. In the corresponding

propositions-as-types interpretation this rule establishes the truth conditions for φ ^ ψ. In

particular, to verify that φ ^ ψ is true, verify that φ is true and ψ is true individually.

Combining these two individual verifications serves as a verification of their conjunction.

∆, a : φ, b : ψ $ ρ : Type

∆, a : φ, b : ψ $ dpa, bq : ρ

∆, z : φˆ ψ $ splitdpzq : ρ

(ˆ-elim)

This elimination rule asserts that to define a function out of φ ˆ ψ it is sufficient to define

how the function acts on pairs of the form pa, bq for a : φ and b : ψ. Intuitively, though

somewhat informally, this rule states implicitly that all terms of φˆψ consist of pairs of the

form pa, bq for a : φ and b : ψ.24 25 In the corresponding propositions-as-types interpretation,

the elimination rule describes the conditions under which it is justified to deduce ρ on the

basis of φ^ ψ. In particular, if ρ holds whenever φ and ψ both hold, then ρ holds whenever
24To understand the notation dpa, bq : ρ it may be helpful to think of d as a function that takes terms a : φ

and b : ψ as input and returns a term dpa, bq : ρ as output. But in general this is simply notation that denotes
a new term ‘d’ that is constructed in a way that depends on a : φ and b : ψ. Similarly, and informally, splitd
in the conclusion can be thought of as a function that takes a term z : φ ˆ ψ of the product type as input
and outputs splitdpzq : ρ.

25In addition to the above three rules, the standard rules for MLTT specify the following computation rule:

∆ $ φ : Type ∆ $ ψ : Type
∆, a : φ, b : ψ $ ρ : Type
∆, a : φ, b : ψ $ dpa, bq : ρ

∆, pa, bq : φˆ ψ $ splitdppa, bqq ” dpa, bq : ρ
(ˆ-comp)

The computation rule establishes coherence between splitd and the function d from which it is derived. In
particular, it establishes that the introduction and elimination rules commute. Because we specialize here
to the propositions-as-types case, in which all inhabited types have exactly one unique term up to identity,
these computation rules play no material role and are therefore omitted.
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φ^ ψ holds.

The coproduct (`) and 0 types are defined by analogous rules of formation, introduc-

tion, and elimination; see, e.g., Appendix A of Lumsdaine and Kupulkin (2014) or Tsementzis

(2018) for a detailed description of those rules. We also list these rules explicitly in our sound-

ness proof for TIL (Theorem 6).

3.2 The Typicality Type

To build a notion of typicality on top of the existing machinery of MLTT, we define

the following rules for a new type Typ as follows.

The first formation rule (Typ-form) says that if φ is a well-formed type in context ∆,

then Typpφq is a well-formed type in that context. This operation is akin to the step taken

when defining the well-formed formulas of TPL in Section 2, in which Typpφq is a well-formed

formula whenever φ is a well-formed formula. Expressed formally, the formation rule reads:

∆ $ φ : Type

∆ $ Typpφq : Type

(Typ-form)

The next introduction rule (Typ-intro) says that a judgment that a proposition φ is

typical can be constructed from any proof of φ. In particular, from a proof a : φ that φ holds,

we construct τφpaq : Typpφq, where τφ is the constructor for the Typpφq-type.

∆ $ φ : Type

∆, a : φ $ τφpaq : Typpφq

(Typ-intro)

The elimination rule (Typ-elim) says that if φ implies ψ (i.e., if every proof of φ (a : φ)

can be turned into a proof of ψ, i.e., dpaq : ψ), then Typpφq implies Typpψq (i.e., any

justification that φ is typical, i.e., x : Typpφq, can be used to construct a justification that
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ψ is typical (impdpxq : Typpψq)).26

∆ $ φ : Type ∆ $ ψ : Type

∆, a : φ $ dpaq : ψ

∆, x : Typpφq $ impdpxq : Typpψq

(Typ-elim)

Finally, the Typ-0 rule states that a justification of the typicality of the empty type

0, i.e., x : Typp0q, can be used to construct an element of the empty type, i.e., σpxq : 0. In

relating this rule to TPL, we interpret 0 as K, so that this rule can be translated to mean

that TyppKq implies K in any context.

∆ ctx

∆, x : Typp0q $ σpxq : 0

(Typ-0)

3.3 The Semantics of TIL

We define a semantics for the above system of rules by associating judgments to subsets

of probability spaces, where each probability space is understood as the credal state of a

rational agent. First, let Π be the set of all sentences in PL and let Π˚ consist of all sentences

in TPL, obtained recursively by adding the unary predicate Typ to PL, as in Section 2.27

To formalize this, we let Ω be a set (i.e., the set of possible worlds) and associate each

proposition φ P Π˚ to a subset of worlds at which φ holds, denoted φ̃ Ď Ω. From this, we

have the following:

1. If φ and ψ are well-formed formulas, then

Čφ^ ψ “ tω P Ω | ω P φ̃ and ω P ψ̃u ” φ̃X ψ̃.

26In the Typ-elimination rule, impd is a constructor for Typpψq built from the constructor dp´q in the
premises. The main content of the elimination rule is its assertion of the validity of constructing impd :
Typpφq Ñ Typpψq from d : φÑ ψ.

27In Section 2, we defined the syntax of TPL using only the logical connectives  and Ñ. We can define
the connectives ^ and _ in the usual way and supplement TPL with these connectives.
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2. If φ and ψ are well-formed formulas, then

Čφ_ ψ “ tω P Ω | ω P φ̃ or ω P ψ̃u ” φ̃Y ψ̃.

3. If φ is a well-formed formula, then

Ă φ “ tω P Ω | ω R φ̃u ” φ̃c.

4. If φ is a well-formed formula, then we require ČTyppφq Ě φ̃.

5. Finally we have K̃ “ H.

Altogether, a credal state is a probability space pΩ,F , νq that assigns credence νpφ̃q to every

proposition φ P Π˚ whose representation satisfies φ̃ P F . Any φ in TPL for which φ R F is a

proposition for which the agent has no credence, and thus suspends judgment. In total, the

credal state pΩ,F , νq specifies the σ-algebra F of propositions about which an agent in this

state has a credence along with a probability measure ν on pΩ,Fq that specifies the agent’s

credences.

In what follows, we fix a set of possible worlds Ω along with a representation φ̃ Ď Ω of

each φ P Π˚. For any fixed ε P p1{2, 1q, we write

PpΠ˚q “ tpΩ,F , νq | @φ P Π˚ φ̃ P F ñ ČTyppφq P F , @φ P Π˚ νp ČTyppφqq “ 1 ô νpφ̃q ě 1´ εu

to denote the set of admissible credal states for a rational agent holding beliefs about propo-

sitions in Π˚. For every φ P Π˚ we define
Sφ “ tpΩ,F , νq | φ̃ P Fu

µφ “ tpΩ,F , νq P PpΠ˚q | φ̃ P F and νpφ̃q “ 1u

We interpret the syntax from Section 3.1 and 3.2 into the semantics of TIL by regarding

all type-theoretic judgments as set-theoretic statements. In particular, we have the following

symbolic correspondence for symbols in type theory, propositional logic, and set theory:
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MLTT PL set theory

∆ ctx — ∆ Ď PpΠ˚q

φ : Type φ well-formed formula Sφ

a : φ φ µφ

$ $ Ď

φˆ ψ φ^ ψ φ̃X ψ̃

φ` ψ φ_ ψ φ̃Y ψ̃

0 K H

In type theory, on the left side of the turnstile we interpret commas as X. With this trans-

lation, the basic judgments of MLTT are interpreted as:

Syntax Semantics

∆ ctx ∆ Ď PpΠ˚q

∆ $ φ : Type ∆ Ď Sφ

∆ $ a : φ ∆ Ď µφ.

Thus, the syntax ∆ ctx translates to ∆ Ď PpΠ˚q, thus justifying our interpretation of the

context as a constraint on the credal states in which a judgment is made. The initial (‘empty’)

context ‚ is thus the one without any constraints on the credal state, namely ‚ ” PpΠ˚q. The

syntax ∆ $ φ : Type translates to ∆ Ď Sφ, which imposes the constraint that the admissible

credal states are those which assign some credence to φ. The syntax ∆ $ a : φ translates

to ∆ Ď µφ, which imposes the constraint that the admissible credal states are those which

assign maximal credence to φ.

For example, an agent in a specific credal state has a σ-algebra F corresponding to

a subset of the propositions in Π˚ and a probability measure ν that assigns a credence to

each measurable subset of F . If the subset φ̃ corresponding to proposition φ is a measurable

subset of F , then the agent having this credence would make the judgment that ‘φ holds’

only if νpφ̃q “ 1 and that ‘φ is typical’ only if νpφ̃q ě 1 ´ ε. The semantic interpretation

of the rules of TIL does not require an agent’s credal state to be pinned down to a single
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probability space in order for a judgment to be justified. The semantics only require that

the agent’s credal state lies in a subset of possible credal states that are consistent with the

given judgment.

To illustrate the semantic translation of the syntax, a deduction of the form

∆ ctx

∆ $ φ : Type

∆, a : φ $ ψ : Type

∆, a : φ $ b : ψ

translates to

∆ Ď PpΠ˚q

∆ Ď Sφ

∆X µφ Ď Sψ

∆X µφ Ď µψ

.

3.4 Soundness

Theorem 6. The syntax of TIL is sound with respect to the above interpretation.

Proof. To prove soundness, we interpret each of the rules for the ˆ, `, 0, and Typ types

into the semantics and show that the rule holds. We begin by specifying the interpretation

of the rules for contexts.

‚ Structural rules, ‚-ctx:

Syntax Semantics

‚ ctx PpΠ˚q Ď PpΠ˚q

Holds trivially: Every set is a subset of itself.28

‚ Structural rules, ext-ctx
28This rule states that there is an initial ‘empty’ context ‚. In the semantics, the context places constraints

on an agent’s credal states, and thus this initial ‘empty’ context corresponds to a context without constraints,
i.e., ∆ ” PpΠ˚q.
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Syntax Semantics

∆ ctx ∆ $ φ : Type

∆, x : φ ctx

∆ Ď PpΠ˚q ∆ Ď Sφ

∆X µφ Ď PpΠ˚q

By assumption ∆ Ď PpΠ˚q, and thus ∆ X A Ď ∆ Ď PpΠ˚q for all other sets A.

Instantiating A “ µφ gives the result.

‚ Structural rules, ax-ctx

Syntax Semantics

∆, a : φ,Ξ ctx

∆, a : φ,Ξ $ a : φ

∆X µφ X Ξ Ď PpΠ˚q

∆X µφ X Ξ Ď µφ

By assumption, ∆XµφXΞ is a set, and for any sets A and B it is always the case that

AXB Ď A, yielding the result.

It follows from these structural rules for contexts that every context is a finite list of

judgments of the form

pa1 : φ1, . . . , an : φnq ctx,

which in our semantic interpretation translates to

µφ1 X ¨ ¨ ¨ X µφn Ď PpΠ˚q.

Thus, in our semantic treatment, every context ∆ can be expressed in the form

∆ ” µφ1 X ¨ ¨ ¨ X µφn (2)

for some finite list φ1, . . . , φn P Π˚. This specific representation will become useful when we

prove soundness for the coproduct and typicality types below.

We next prove soundness for the product type.
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‚ Product type, formation rule:

Syntax Semantics

∆ $ φ : Type

∆ $ ψ : Type

∆ $ φˆ ψ : Type

∆ Ď Sφ

∆ Ď Sψ

∆ Ď Sφ^ψ

Let pΩ,F , νq P ∆ so that φ̃ P F and ψ̃ P F . Then Čφ^ ψ ” φ̃ X ψ̃ P F because F is a

σ-algebra on Ω and is closed under intersection. It follows that ∆ Ď Sφ^ψ, as claimed.

‚ Product type, introduction rule:

Syntax Semantics

∆ $ φ : Type ∆ $ a : φ

∆ $ ψ : Type ∆ $ b : ψ

∆ $ pa, bq : φˆ ψ

∆ Ď Sφ ∆ Ď µφ

∆ Ď Sψ ∆ Ď µψ

∆ Ď µφ^ψ

First note that µφ Ď Sφ and µψ Ď Sψ, so that the premises together imply ∆ Ď µφXµψ.

Now take any pΩ,F , νq P µφ X µψ. Since φ̃ P F and ψ̃ P F by assumption, we

must have φ̃ X ψ̃ P F because F is a σ-algebra. Furthermore, by the equivalence

 pφ^ψq ”  φ_ ψ, we have pφ̃Xψ̃qc ” φ̃cYψ̃c. The assumption that νpφ̃q “ νpψ̃q “ 1

implies νpφ̃cq “ νpψ̃cq “ 0, and thus

νpφ̃X ψ̃q “ 1´ νpφ̃c Y ψ̃cq ě 1´ νpφ̃cq ´ νpψ̃cq “ 1.

It follows that pΩ,F , νq P µφ^ψ, so that ∆ Ď µφ^ψ, as claimed.

‚ Product type, elimination rule:
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Syntax Semantics

∆ $ φ : Type ∆ $ ψ : Type

∆, a : φ, b : ψ $ ρ : Type

∆, a : φ, b : ψ $ dpa, bq : ρ

∆, z : φˆ ψ $ splitdpzq : ρ

∆ Ď Sφ ∆ Ď Sψ

∆X µφ X µψ Ď Sρ

∆X µφ X µψ Ď µρ

∆X µφ^ψ Ď µρ

Let pΩ,F , νq P ∆ X µφ^ψ. Then, in particular, we must have pΩ,F , νq P µφ^ψ, from

which it follows that minpνpφ̃q, νpψ̃qq ě νpφ̃ X ψ̃q “ 1; whence νpφ̃q “ νpψ̃q “ 1 and

pΩ,F , νq P ∆ X µφ X µψ. Now by assumption, we have ∆ X µφ X µψ Ď µρ so that

pΩ,F , νq P µρ, and thus ∆X µφ^ψ Ď µρ, as claimed.

Before we move on to discuss the coproduct type, we can use the rules for product

type to deduce that µφ X µψ “ µφ^ψ for any φ, ψ P Π˚. From this and the representation of

contexts in the form (2), we can equivalently express any context as

∆ ” µφ1^¨¨¨^φn , (3)

which can more compactly be written as

∆ ” µΦ

for some Φ P Π˚, because φ̃1 X ¨ ¨ ¨ X φ̃n P F whenever φ̃1, . . . , φ̃n P F . This representation

plays a role in our proof of soundness for the coproduct elimination rule below.

We next discuss the coproduct type.

‚ Coproduct type, formation rule:

Syntax Semantics

∆ $ φ : Type

∆ $ ψ : Type

∆ $ φ` ψ : Type

∆ Ď Sφ

∆ Ď Sψ

∆ Ď Sφ_ψ

43



Let pΩ,F , νq P Sφ X Sψ, then φ̃c P F , ψ̃c P F , and φ̃ X ψ̃ P F , because F is an

algebra. Finally, by definition we have Čφ_ ψ ” φ̃Y ψ̃ ” pφ̃cX ψ̃cqc P F , because F is a

σ-algebra and is closed under complementation and countable intersection. It follows

that pΩ,F , νq P Sφ_ψ.

‚ Coproduct type, introduction rule 1:

Syntax Semantics

∆ $ φ : Type

∆ $ ψ : Type

∆ $ a : φ

∆ $ inlpaq : φ` ψ

∆ Ď Sφ

∆ Ď Sψ

∆ Ď µφ

∆ Ď µφ_ψ

The three assumptions combine to imply ∆ Ď µφ X Sψ, so that any pΩ,F , νq P ∆

satisfies φ̃, ψ̃ P F and νpφ̃q “ 1. Because F is an algebra (or alternatively by the

preceding formation rule), we have φ̃ Y ψ̃ P F , and so ν assigns measure to it, and

since probability measures are increasing we must have νpφ̃ Y ψ̃q ě νpφ̃q “ 1; whence

ν P µφ_ψ, as claimed.

‚ Coproduct type, introduction rule 2:

Syntax Semantics

∆ $ φ : Type

∆ $ ψ : Type

∆ $ b : ψ

∆ $ inrpbq : φ` ψ

∆ Ď Sφ

∆ Ď Sψ

∆ Ď µψ

∆ Ď µφ_ψ

The three assumptions combine to imply ∆ Ď µψ X Sφ, so that any pΩ,F , νq P ∆

satisfies φ̃, ψ̃ P F and νpψ̃q “ 1. Because F is an algebra (or alternatively by the

preceding formation rule), we have φ̃ Y ψ̃ P F , and so ν assigns measure to it, and

since probability measures are increasing we must have νpφ̃ Y ψ̃q ě νpψ̃q “ 1; whence

ν P µφ_ψ, as claimed.
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‚ Coproduct type, elimination rule:

Syntax Semantics

∆ $ φ : Type ∆ $ ψ : Type

∆, a : φ, b : ψ $ ρ : Type

∆, a : φ $ dlpaq : ρ

∆, b : ψ $ drpbq : ρ

∆, z : φ` ψ $ casedl,drpzq : ρ

∆ Ď Sφ ∆ Ď Sψ

∆X µφ X µψ Ď Sρ

∆X µφ Ď µρ

∆X µψ Ď µρ

∆X µφ_ψ Ď µρ

Here we use the representation in (3) to express ∆ ” µΦ for some Φ Ď Π˚, so that the

third and fourth assumptions and the conclusion on the righthand side, respectively,

become

µΦ^φ Ď µρ,

µΦ^ψ Ď µρ and

µΦ^pφ_ψq Ď µρ.

By assumption, we have µΦ^φ Ď µρ. Thus, any ν that satisfies νpΦ̃ X φ̃q “ 1 must

also satisfy νpρ̃q “ 1, which is possible only if Φ̃ X φ̃ Ď ρ̃. For suppose that there is

some ω P Φ̃ X φ̃ for which ω R ρ̃. Then there is a measurable space pΩ,Fω, νωq with

powerset σ-algebra Fω on Ω and νω the atomic measure at tωu (i.e., νωptωuq “ 1).

With ω P Φ̃X φ̃, it follows that

νωpΦ̃ X φ̃q ě νωptωuq “ 1 and νωpρ̃q “ 0, contradicting the assumption. By applying

an analogous argument to the fourth assumption, we must have Φ̃X φ̃ Ď ρ̃.

For the conclusion, note that Φ̃X pφ̃Y ψ̃q ” pΦ̃X φ̃q Y pΦ̃X ψ̃q, so that the conclusion

reads

µpΦ^φq_pΦ^ψq Ď µρ.

45



Now, suppose pΩ,F , νq P µpΦ^φq_pΦ^ψq so that νppΦ̃X φ̃q Y pΦ̃X ψ̃qq “ 1. Then by the

preceding argument we have Φ̃X φ̃ Ď ρ̃ and Φ̃X ψ̃ Ď ρ̃, which implies

pΦ̃X φ̃q Y pΦ̃X ψ̃q Ď ρ̃.

It follows that
1 “ νppΦ̃X φ̃q Y pΦ̃X ψ̃qq ď νpρ̃q;

whence, νpρ̃q “ 1 and pΩ,F , νq P µρ, as claimed.

We next discuss the 0 type.

‚ 0-type, formation rule:

Syntax Semantics

∆ ctx

∆ $ 0 : Type

∆ Ď PpΠ˚q

∆ Ď SK

By assumption ∆ is a subset of probability spaces pΩ,F , νq, with F a σ-algebra over

Ω. As any σ-algebra contains H it is immediate that PpΠ˚q “ SK and the conclusion

follows.

‚ 0 type, elimination rule:29

Syntax Semantics

∆ $ φ : Type

∆, x : 0 $ efqφpxq : φ

∆ Ď Sφ

∆X µK Ď µφ

The subset µK Ď PpΠ˚q consists of all probability spaces pΩ,F , νq that assign measure

1 to H. By definition, any probability measure ν must satisfy νpHq “ 0, so that

µK “ H. Thus, the conclusion reads ∆X µK ” H Ď µφ, which holds trivially.
29Here efq stands for ex falso quodlibet (“from falsehood, anything follows”). Formally, this rule says that

given any φ : Type and a proof x : 0 of the contradiction it is possible to construct a proof efqφpxq : φ. This
is a type-theoretic version of the principle of explosion in PL, K Ñ φ.
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Finally, for the Typ-type.

‚ Typicality type, formation rule:

Syntax Semantics

∆ $ φ : Type

∆ $ Typpφq : Type

∆ Ď Sφ

∆ Ď STyppφq

By definition, we require that ČTyppφq is a measurable set whenever φ̃ is, so that the

conclusion immediately follows by definition of PpΠ˚q.

‚ Typicality type, introduction rule:

Syntax Semantics

∆ $ φ : Type

∆, a : φ $ τφpaq : Typpφq

∆ Ď Sφ

∆X µφ Ď µTyppφq

As any pΩ,F , νq P ∆ X µφ must satisfy νpφ̃q “ 1 and it is required that ČTyppφq Ě φ̃,

we must have νp ČTyppφqq ě νpφ̃q “ 1, and pΩ,F , νq P µTyppφq, as claimed.

‚ Typicality type, elimination rule:

Syntax Semantics

∆ $ φ : Type ∆ $ ψ : Type

∆, a : φ $ dpaq : ψ

∆, x : Typpφq $ impdpxq : Typpψq

∆ Ď Sφ ∆ Ď Sψ

∆X µφ Ď µψ

∆X µTyppφq Ď µTyppψq

By (3), we can express the second assumption as µΦ^φ Ď µψ for some Φ P Π˚, from

which it follows that Φ̃X φ̃ Ď ψ̃ by an argument already given above when proving the

elimination rule for the coproduct type. Thus, we can rewrite the conclusion as

µΦ^Typpφq Ď µTyppψq.
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Let pΩ,F , νq P µΦ^Typpφq. Then νpΦ̃ X ČTyppφqq “ 1, and in particular νpΦ̃q “ 1 and

νp ČTyppφqq “ 1, implying that νpφ̃q ě 1´ ε.

By definition we have
νpΦ̃X φ̃q “ νpΦ̃q ` νpφ̃q ´ νpΦ̃Y φ̃q

ě νpΦ̃q ` p1´ εq ´ 1

“ 1´ ε.

By assumption, we have νpψ̃q ě νpΦ̃X φ̃q ě 1´ ε, and νp ČTyppψqq “ 1 by definition.

‚ Typicality type, 0 rule:

Syntax Semantics

∆ ctx

∆, x : Typp0q $ σpxq : 0

∆ Ď PpΠ˚q

∆X µTyppKq Ď µK

By definition, every probability measure is required to assign probability 0 to K̃ ” H.

Thus there does not exist any probability measure ν for which νpHq ě 1 ´ ε, as is

required to make the judgment that K is typical. It follows that µTyppKq ” H; whence,

∆X µTyppKq ” H Ď H ” µK, as required.

This completes the proof of soundness.

3.5 Additional Results

The above rules for the Typ-type have several immediate consequences for derived

inference rules involving typicality. For example, we have the following one-way hierarchy of

typicality judgments involving conjunction and disjunction. With ‘ñ’ understood informally

as ‘implies’, we have
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Typpφ^ ψq ñ Typpφq ^ Typpψq ñ Typpφq _ Typpψq ñ Typpφ_ ψq. (4)

We prove this formally below.

Theorem 7. The implication arrows in (4) correspond, respectively, to the following derived

inference rules:30

1. Typpφ^ ψq ñ Typpφq ^ Typpψq:

∆ $ φ : Type ∆ $ ψ : Type

∆, z : Typpφˆ ψq $ pimpprφpzq, impprψpzqq : Typpφq ˆTyppψq

2. Typpφq ^ Typpψq ñ Typpφq _ Typpψq:31

∆ $ φ : Type ∆ $ ψ : Type

∆, z : Typpφq ˆTyppψq $ inlpprTyppφqpzqq : Typpφq `Typpψq

3. Typpφq _ Typpψq ñ Typpφ_ ψq:

∆ $ φ : Type ∆ $ ψ : Type

∆, z : Typpφq `Typpψq $ caseimpinl,impinrpzq : Typpφ` ψq

Proof. To prove the first implication, we observe first that

∆, x : φˆ ψ $ prφpxq : φ and

∆, x : φˆ ψ $ prψpxq : ψ

are both valid judgments in MLTT which match the second line in the elimination rule for
30Note below we define the projection operator prφ as that which selects out the corresponding coordinate

from a pair pa, bq : φˆ ψ. For example, prφppa, bqq ” a : φ and prψppa, bqq ” b : ψ.
31An alternative formalization of this implication is given by

∆ $ φ : Type ∆ $ ψ : Type

∆, z : Typpφq ˆTyppψq $ inrpprTyppψqpzqq : Typpφq `Typpψq
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the Typ-type. It follows, from each of these lines respectively, that

∆, y : Typpφˆ ψq $ impprφpyq : Typpφq and

∆, y : Typpφˆ ψq $ impprψpyq : Typpψq.

An application of the introduction rule for the product type gives

∆, y : Typpφˆ ψq $ pimpprφpyq, impprψpyqq : Typpφq ˆTyppψq.

To prove the second implication, it is enough to observe that Φ ˆ Ψ ñ Φ ` Ψ for all

Φ,Ψ : Type in any context. Formally, we have

∆, x : Typpφq ˆTyppψq $ inlpprTyppφqpxqq : Typpφq `Typpψq,

or alternatively

∆, x : Typpφq ˆTyppψq $ inrpprTyppψqpxqq : Typpφq `Typpψq.

To prove the third implication, we must apply the elimination rule for the co-product

type. In this case, the elimination rule is applied by

∆ $ Typpφq : Type ∆ $ Typpψq : Type

∆, a : Typpφq, b : Typpψq $ Typpφ` ψq : Type

∆, a : Typpφq $ impinlpaq : Typpφ` ψq

∆, b : Typpψq $ impinrpbq : Typpφ` ψq

∆, z : Typpφq `Typpψq $ caseimpinl,impinrpzq : Typpφ` ψq

We note that the arrows in (4) do not reverse in general. To see this, we can produce a

semantic counterexample by giving a probability space pΩ,F , νq for which the corresponding

interpretation fails.
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1. Typpφ^ ψq ö Typpφq ^ Typpψq. To show this, we instead show

µTyppφ^ψq Ğ µTyppφq X µTyppψq.

Let Ω “ tω1, ω2, ω3u have the power set σ-algebra and define measurable sets

corresponding to φ, ψ, Typpφq, Typpψq, and their conjunctions and disjunctions

by

φ̃ “ tω1, ω2u

ψ̃ “ tω2, ω3u

ČTyppφq “ tω1, ω2, ω3u “ Ω

ČTyppψq “ tω1, ω2, ω3u “ Ω

ČTyppφ^ ψq “ tω2u

Fix ε “ 1{3 and define measure ν by

νptω1uq “ νptω3uq “ 1{4 and νptω2uq “ 1{2.

From this, we have
νpφ̃q “ νpψ̃q “ 3{4 ě 1´ ε,

so that φ and ψ are typical according to ν. (Also note that

νp ČTyppφqq “ νp ČTyppψqq “ νpΩq “ 1,

as required to justify the judgments that φ and ψ are typical.) Thus, we have

Typpφq ^ Typpψq in accordance with the righthand side, but

νpφ̃X ψ̃q “ νptω2uq “ 1{2 ă 1´ ε,

so that φ^ ψ is not typical.
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2. Typpφq ^ Typpψq ö Typpφq _ Typpψq. To show this, we instead show

µTyppφq X µTyppψq Ğ µTyppφq Y µTyppψq.

Let Ω “ tω1, ω2, ω3u have the power set σ-algebra and define measurable sets

corresponding to φ, ψ, Typpφq, Typpψq, and their conjunctions and disjunctions

by

φ̃ “ tω1, ω2u

ψ̃ “ tω2, ω3u

ČTyppφq “ tω1, ω2, ω3u “ Ω

ČTyppψq “ tω2, ω3u

ČTyppφ^ ψq “ tω2u

Fix ε “ 1{3 and define measure ν by

νptω1uq “ 1 and νptω2uq “ νptω3uq “ 0.

Thus, νpφ̃q “ 1 justifies the judgment in Typpφq, so that the righthand side holds.

But ČTyppφqX ČTyppψq “ tω2, ω3u has measure 0 under ν, so the lefthand side does

not hold under ν.

3. Typpφq _ Typpψq ö Typpφ_ ψq. To show this, we instead show

µTyppφq Y µTyppψq Ğ µTyppφ_ψq.

Let Ω “ tω1, ω2, ω3u have the power set σ-algebra and define measurable sets

corresponding to φ, ψ, Typpφq, Typpψq, and their conjunctions and disjunctions

by

φ̃ “ tω1, ω2u
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ψ̃ “ tω2, ω3u

ČTyppφq “ tω1, ω2u

ČTyppψq “ tω2, ω3u

ČTyppφ^ ψq “ tω2u

ČTyppφ_ ψq “ tω1, ω2, ω3u “ Ω

Fix ε “ 1{10 and define measure ν by

νptω1uq “ νptω3uq “ 1{4 and νptω2uq “ 1{2.

In this case, we have
νpφ̃q “ νpψ̃q “ 0.75 ă 1´ 1{10,

so that neither φ nor ψ is typical and the lefthand side fails to hold. But the

disjunction φ̃ Y ψ̃ “ Ω has ν-measure 1, and is therefore typical, satisfying the

righthand side.

4 Conclusion

Formally, TPL and TIL have a great deal in common. Their proof theories are sound

with respect to their semantic theories. In both TPL and TIL, typicality distributes over

conjunction in one direction but not in the other: if p ^ q is typical then p is typical and

q is typical, but if p is typical and q is typical then it does not follow that p ^ q is typical.

Similarly, in both TPL and TIL, typicality distributes over disjunction in one direction but

not in the other: if p is typical or q is typical then p_ q is typical, but if p_ q is typical then

it does not follow that p is typical or q is typical.

There are important formal differences between TPL and TIL, however. The logic

underlying TPL is classical, whereas the logic underlying TIL is intuitionistic. And while
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TPL is formulated in the manner of propositional modal logic, TIL is formulated in the

manner of type theory.

These formal differences correspond to conceptual and metaphysical differences between

the notion of typicality captured by TPL and the notion of typicality captured by TIL.

For instance, according to TPL, the notion of typicality conforms to the rules of classical

logic. According to TIL, in contrast, the notion of typicality is more constructive than

that, requiring that an agent make explicit judgments about the truth and typicality of

propositions. And there are other conceptual and metaphysical differences between these

two systems. Whereas the meanings of typicality statements in TPL are given by sets of

possible worlds, the meanings of typicality statements in TIL are given by sets of possible

credences. So TPL is perhaps best understood as formalizing objective typicality facts, while

TIL is perhaps best understood as formalizing subjective typicality judgments. Given these

differences, it is worth exploring – in future work – the circumstances in which one system

may be preferable to the other.

But regardless, both systems offer rigorous regimentations of typicality reasoning. They

formalize the logical structure of the notion of typicality: its grammar, its semantic content,

its proof theory, and the sorts of valid inferences which it licenses. Because of that, TPL and

TIL offer formal frameworks for typicality reasoning on a par with the formal framework that

first-order logic offers for quantificational reasoning, or the formal framework that Bayesian

theory offers for reasoning in terms of credences. TPL and TIL limn the deep logical structure

which is shared by many instances of typicality reasoning in the literature on quantum

mechanics and statistical mechanics. These systems reveal, in other words, what is common

to the diverse array of explanations, predictions, and other kinds of scientific reasoning, which

invoke the notion of the typical. In short, TPL and TIL capture the logic of typicality.
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