
Meaning and Statespace

Isaac Wilhelm

(please ask before citing/circulating)

Abstract

In this paper, I formulate a theory of how worldly states determine the truth values

of sentences. Then I put that theory to work: I use it to analyze the contents of

sentences, partial content, propositions, subject matters, entailment, counterfactuals,

logical subtraction, and more. The theory draws from—and extends—recent work on

state-based approaches to truth conditions and to various notions related to meaning,

while avoiding some problems that other approaches face.

1 Introduction

What are sentences about? Given any particular sentence, what is its content? What

does it take for the content of one sentence to be part of the content of another? How do the

contents of simpler sentences determine the contents of sentences which are more complex?

And what about other notions connected to meaning and semantics: propositions, subject

matters, entailment, and so on? How should those be analyzed?

In this paper, I propose a theory—call it ‘Statespace’—which supports answers to these

questions.1 Statespace is a particular implementation of a more general view of what makes
1There are different approaches to some—or most, or even all—of these questions, several of which I will

discuss later. Some are based on syntactic features of denoting expressions (N. Goodman, 1961; Ryle, 1933).
Others are based on sets, and partitions, of possible worlds (Lewis, 1986; 1998; Yablo, 2014). Still others
appeal to structured complexes (King, 2007; Soames, 1987) or abstract algebras (Dorr, 2016; J. Goodman,
2019).
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sentences true or false. According to that more general view, sentences are made true, or

made false, by states of the world: the state of grass being green, for instance, makes the

sentence “Grass is green” true.2 Statespace implements this more general view, and in so

doing, supports analyses of over a dozen semantic notions connected to the meanings of

expressions in first-order logic.

In slogan form, Statespace says the following: states make sentences true, or false, in

virtue of having parts which make the parts of those sentences true or false. To make true is

to have parts which make certain sentential parts true; to make false is to have parts which

make certain sentential parts false. That is the guiding idea behind Statespace.

In Section 2, I present the main conditions to which states conform: as will become

clear, these conditions are mereological, in that they describe how some states are parts of

other states. In Section 3, I use states to formulate truth conditions for sentences of first-

order logic; along with the conditions in the previous section, these conditions comprise the

theory Statespace.

Throughout the rest of the paper, I explore how Statespace can be used to analyze

many different notions related to sentences and their contents. In Section 4, I use Statespace

to analyze the contents of sentences, propositions, and three interrelated notions of partial

content. In Section 5, I use Statespace to analyze the notion of making a sentence true in

an exact way, the notion of making a sentence false in an exact way, the subject matters of

sentences, and aboutness. In Section 6, I use Statespace to analyze relations of entailment and

containment. In Section 7, I use Statespace to formulate truth conditions for counterfactuals.

In Section 8, I use Statespace to analyze logical subtraction among propositions. Finally, in

Section 9, I compare Statespace to other theories of states and truth in the literature.

The material to come gets quite technical. So to increase readability, in the main text,

I present clear but often heuristic formulations of the key conditions, definitions, analyses,
2There are other particular implementations of this more general view—see (Barwise, 1981; Barwise &

Perry, 1983; Fine, 2017a; 2017b; 2017c; Kratzer, 1989; 2012; van Fraassen, 1969)—and Statespace is similar
to some of them. Throughout this paper, I discuss those similarities, while also discussing some crucial
differences.
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and theorems. For fully precise formulations of all that, see appendices A–G.

2 The Mereology of States

Some states are parts of others. In this section, I describe this parthood relation among

states. To start, I discuss states in a little more detail. Then I present the mereological

conditions to which states conform.

To see how states can be parts of each other, consider the following example. Take

the state of grass being green, and take the state of roses being red. There is a state which

combines these two. It is the state of grass being green and roses being red. And both of the

previous two states are parts of this combination. The state of grass being green, in other

words, is part of the state of grass being green and roses being red. The state of roses being

red is part of the latter state too.

Following the literature, I take states to be fact-like entities (Elgin, 2021, p. 5; Fine &

Jago, 2019, p. 536). For my purposes here, however, a state can be anything which obeys

the principles to come. In particular, states can be whatever obeys the parthood conditions

in this section and the semantic conditions in Section 3. Anything which does that is suited

to play the semantic roles that states play in this paper.3

States have various modal features. For starters, only some states obtain. The state of

grass being green obtains, for instance: it holds in the actual world. But the state of grass

being white does not: it only obtains in non-actual possibilities. In addition, some states

obtain necessarily. The state of four being even obtains in every possible world, for example,

as does the state of five being prime. And some states necessarily fail to obtain. The state

of four being odd—though it exists—does not obtain in any possible world whatsoever; and
3According to the view which I prefer—but which need not be combined with the coming postulates—the

truth conditions presented in this paper jointly form a metaphysical semantics for sentences of first-order
logic. The semantics is ‘metaphysical’, in the sense that it is the semantics by which rigorous metaphysical
theories of the world should be interpreted; and it need not be the best semantics for linguistic theories of
natural languages. For more on the notion of metaphysical semantics, see (Sider, 2011).
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similarly for the state of grass being both green and white.

In a very rough and heuristic way, states may be described as parts of reality. Our

world, for example, contains the state of grass being green as a part. Some merely possible

worlds contain, as a part, the state of grass being white. But not all states are parts of some

possible world or other. The state of four being odd is not part of any possible world, since

it cannot obtain.4

Let us now consider the parthood conditions which describe relationships among states.

Altogether, there are six of them. And as will become clear, they are pretty simple and

intuitive. It is striking that such simple, intuitive conditions can support such a wide-ranging

theory of the meanings of sentences in first-order logic.

These conditions invoke several technical symbols. For starters, they use a set of states:

in what follows, represent that set by ‘S’. In addition, they use a two-place predicate ‘Ď’

which represents the parthood relation: so for any states s and t in S, ‘s Ď t’ says that s is

part of t.

Here are the first three conditions.

Reflexivity

For all s in S, s Ď s.

Anti-Symmetry

For all s and t in S, if s Ď t and t Ď s then s “ t.

Transitivity

For all r, s, and t in S, if r Ď s and s Ď t then r Ď t.

4For lack of space, in this paper, I do not formulate theories of the interaction between states and modal
notions like necessity and possibility; for some such theories, see (Angere, 2015; Elgin, 2021; Fine, 2017c;
Moltmann, 2018).
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Any relation on S, which satisfies these three conditions, is called a ‘partial order’. So

together, these three conditions say that Ď is a partial order over S.

The fourth condition says that there are no infinite descending chains of states.5

Well-foundedness

There do not exists states s1, s2, and so on, in S, such that . . . , s3 Ĺ s2, s2 Ĺ s1.

In other words, there are no states such that (i) the first contains the second as a proper

part,6 (ii) the second contains the third as a proper part, (iii) the third contains the fourth

as a proper part, and so on. Any relation on S, which satisfies this condition, is called ‘well-

founded’. So this condition, along with the previous three, says that Ď is a well-founded

partial order over S.7

The last two conditions invoke the notions of least upper bound and greatest lower

bound. Precise definitions of these notions are presented in Appendix A. For now, however,

the following rough characterizations will suffice. For each set of states, an ‘upper bound’

of that set is a state which contains every state in that set as a part. And the ‘least upper

bound’ of that set is, of all the upper bounds of that set, the smallest: it is smallest in the

sense that it is, itself, part of every other upper bound. Similarly, for each set of states, a

‘lower bound’ of that set is a state which is part of every state in that set. And the ‘greatest

lower bound’ of that set is, of all that set’s lower bounds, the biggest: it is biggest in the

sense that it contains, itself, every other lower bound as a part.

Now for the fifth condition. Basically, it says that given any collection of states, the
5In other words, states are not gunky. For discussions of gunk and its properties, see (Lewis, 1991; Russell,

2008; Zimmerman, 1996).
6One state is a ‘proper part’ of another just in case the former is part of the latter but the latter is not

part of the former. Proper parthood is represented by the symbol ‘Ĺ’.
7Interestingly, this assumption is not actually needed. As a complicated proof shows, the truth conditions

in Appendix B—along with some minimal additional assumptions about variable assignments and which
objects exist—imply that the states which determine any given sentence’s truth values do not form any
infinite descending chains (the proof’s complications stem from certain ‘infinitary’ characteristics of the truth
conditions for first-order quantifiers). So I adopt this fourth condition merely as a simplifying assumption.
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least upper bound of that collection exists.

Existence of Least Upper Bound

For each subset A of S, there exists a state in S which is the least upper bound of A;

denote this state by ‘
d
A’.8

For instance, take the following two states: (i) the state of grass being green, and (ii) the

state of roses being red. According to the condition above, there exists a smallest state which

contains the states in both (i) and (ii). This smallest state is, of course, the state of grass

being green and roses being red.

Least upper bounds are closely related to the more familiar notion of fusions. In par-

ticular, the least upper bound of some states is, intuitively, the fusion of those states. That

is, the least upper bound of a set A of states is the fusion of the states in A. For the fusion

of some entities is, in general, the smallest object which contains those entities as parts. And

that is precisely what the least upper bound of the entities in A—namely,
d
A—is.

The sixth condition says that given any collection of states, the greatest lower bound

of that collection exists.

Existence of Greatest Lower Bound

For each subset A of S, there exists a state in S which is the greatest lower bound of

A; denote this state by ‘
Ů

A’.

8As will become clear, I use ‘[’ and ‘
d
’ as the symbols for least upper bounds, while I use ‘\’ and ‘

Ů

’
as the symbols for greatest lower bounds. This is the opposite of how those symbols are often used in the
mathematics and philosophy literature: often, ‘[’ and ‘

d
’ are used for greatest lower bounds, while ‘\’ and

‘
Ů

’ are used for least upper bounds. I do not follow that convention because unfortunately, in the context
of truth conditions, it is quite misleading. The operation of least upper bound is the state-theoretic analog
of conjunction, while the operation of greatest lower bound is the state-theoretic analog of disjunction. So
since conjunction is represented by the symbol ‘^’, it makes sense to represent least upper bounds using ‘[’
and ‘

d
’ rather than ‘\’ and ‘

Ů

’. And since disjunction is represented by the symbol ‘_’, it makes sense to
represent greatest lower bounds using ‘\’ and ‘

Ů

’ rather than ‘[’ and ‘
d
’.
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For instance, take the following two states: (i) the state of grass being green, and (ii) the

state of roses being red. According to the condition above, there exists a biggest state which

is part of (i) and also part of (ii). This biggest state is, it turns out, the state of grass being

green or roses being red.

In what follows, I adopt two notational conventions. First, for all r and s in S, the

least upper bound of tr, su is denoted ‘r[ s’. Second, for all r and s in S, the greatest lower

bound of tr, su is denoted ‘r \ s’.

Now for the final definition of this section. For any set S and any well-founded, partial

order Ď over S, S and Ď jointly form a ‘complete, well-founded lattice’ just in case S and

Ď jointly satisfy the last two conditions just mentioned. As will become clear, complete and

well-founded lattices are the basis for the theory of meaning to come.

Altogether, this theory of states—call it the ‘Complete Lattice’ theory—is pretty simple.

According to the Complete Lattice theory, parthood among states is reflexive, anti-symmetric,

transitive, and well-founded. In addition, every collection of states has both a least upper

bound and a greatest lower bound. And that is all. No more mereological assumptions will

be needed, in order to give a comprehensive theory of meaning for sentences in first-order

logic.9

3 Truth Conditions

In this section, I use states to formulate truth conditions. To start, I briefly summarize

the first-order language on which I will focus. Then I present the truth conditions.

The language—call it ‘L’—consists of the following symbols. First, L contains infinitely

many constants ‘a’, ‘b’, ‘c’, and so on. Second, L contains infinitely many variables ‘x’, ‘y’, ‘z’,

and so on. Third, for each natural number n, L contains infinitely many n-place predicates
9One caveat: in order to analyze logical subtraction, two more mereological assumptions will be needed.

See Section 8.
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‘F ’, ‘G’, and so on. Fourth, L contains the connectives ‘ ’, ‘^’, and ‘_’. Fifth, L contains

the quantifiers ‘@’ and ‘D’.

The standard definitions from first-order logic apply to expressions of L. A ‘term’, for

instance, is a constant or a variable. In addition, for each natural number n, for each n-

place predicate F , and for all terms τ1, . . . , τn, the expression Fτ1 . . . τn is called an ‘atomic

formula’. All other formulas are defined in the usual way. A ‘sentence’ is a formula with no

free variables.10

The truth conditions, for sentences of L, invoke variable assignments and models. A

variable assignment is a function which maps every variable in L to an object. A model

consists of six ingredients: a set of states, a two-place parthood relation among states, a

set of objects, a constant assignment, a function which maps atomic formulas of L to sets

of states, and another function which maps atomic formulas of L to sets of states. Let us

consider each of these in turn.

The first and second ingredients are, respectively, a set of states S and a corresponding

parthood relation Ď. Together, S and Ď jointly form a complete, well-founded lattice. So

they satisfy the six conditions from Section 2.

The third ingredient is a set of objects I. Intuitively, the members of I are the objects

which terms in L can be used to express. So every variable assignment maps each variable

in L to an object in I. And similarly, the constants in L denote objects in I too.

The fourth ingredient is a constant assignment. A constant assignment is a function

which maps each constant in L to an object in I. So constant assignments are the formal

tools that specify the objects which constants denote.

The fifth and sixth ingredients are functions which map atomic formulas of L to sets

of states. Let ‘V_’ denote one of these functions and let ‘F_’ denote the other. Intuitively,

the set of states to which V_ maps a given atomic formula contains exactly the states which

make that formula true. And intuitively, the set of states to which F_ maps a given atomic

10For a thorough presentation of these definitions, see (Enderton, 2001).
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formula contains exactly the states which make that formula false.

Here is an example. Let ‘P ’ be a one-place predicate which expresses the property of

being green. Let ‘a’ be a constant which denotes grass. Then ‘Pa’ says that grass is green.

So VPa is the set of all states in which grass is green: the state of grass being green, the state

of grass being green and roses being red, and so on. And FPa is the set of all states in which

grass is not green: the state of grass being not green, the state of grass being not green and

roses being red, and so on.

The functions V_ and F_ have several features. Most of those features are pretty

technical; so I relegate them to Appendix B. One of those features, however, has many

philosophically interesting implications for the analyses to come. So it is worth discussing

here.

To explain what that feature is, a preliminary definition will be useful. Let A be a

subset of a given set S of states. Then A is a ‘cone’ just in case there exists a state a such

that for all s in S, s is in A if and only if a Ď s; in such a case, the state a is called the ‘point’

of A. In other words, a cone is a collection of states which all share a single state—the cone’s

point—in common.

The picture below illustrates the basic idea behind cones.

S

A

a

The entire space represents the set of states S. The vertex a, where the two lines meet,

represents a particular state. The two lines, and the space inside them, represent all of the
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states in S which contain a as a part. So those two lines, along with the space inside them,

represent the cone A whose point is a. The empty space surrounding the cone represents

states which do not contain a as a part.

Now for the interesting feature of the functions V_ and F_: for each atomic formula

in L, V_ maps that formula to a cone in S, and F_ maps that formula to a cone in S. For

example, take the one-place predicate ‘P ’ which expresses the property of being green, and

take the constant ‘a’ which denotes grass. Then VPa is a cone: in particular, it is the cone

whose point is the state of grass being green. And FPa is a cone too: in particular, it is the

cone whose point is the state of grass not being green.

According to the analysis of content to come, the functions V_ and F_ play the role of

assigning contents to atomic formulas. The cone VPa, according to that analysis, partially

comprises the content of the formula ‘Pa’; that cone is part of what that formula means.

Similarly, the cone FPa, according to that analysis, also partially comprises the content of

the formula ‘Pa’; that cone is also part of what that formula means. And taken together,

these two cones—VPa and FPa—comprise the content of the formula ‘Pa’. They are what

that formula means.

As I will explain later, cones are quite important. The truth conditions to come, along

with a particular analysis of content, can be used to derive the following result: the content of

any sentence in L whatsoever is determined by a series of cones. Basically, for each sentence

in L, the content of that sentence is the union of cones which have certain nice features.

Here is a quick overview of how the truth conditions will work. Basically, those con-

ditions describe—in a complete and general way—two different truth-theoretic relations be-

tween sentences and states. One is the relation of verification. Each sentence in L is verified—

that is, made true—by certain states; in what follows, say that the ‘verifiers’ of a sentence

are the states which make that sentence true. The other is the relation of falsification. Each

sentence in L is falsified—that is, made false—by certain states too; in what follows, say that

the ‘falsifiers’ of a sentence are the states which make that sentence false. The truth condi-

10



tions describe how the verifiers and falsifiers of simpler sentences determine the verifiers and

falsifiers of more complicated sentences. In this way, the truth conditions provide a complete

theory of what makes first-order sentences true and what makes first-order sentences false.

The truth conditions rely on the models and variable assignments mentioned earlier.

For brevity, in the presentation of truth conditions in this section, I omit some details: I

omit all mention of variable assignments, for instance; and I omit all mention of constant

assignments. For the fully rigorous formulation of the truth conditions, which includes those

details, see Appendix B.

With all that as background, here are the truth conditions. Let S be a set of states, and

let Ď be a partial order on S. Suppose that S and Ď jointly form a complete, well-founded

lattice. Let I be a set of objects. And let V_ and F_ be the functions described above. Then

verification and falsification is defined according to the six conditions below. To start, here

are the truth conditions for atomic formulas.

Atomic

Let s be a state in S, and let Fτ1 . . . τn be an atomic formula.

‚ Verification: s verifies Fτ1 . . . τn if and only if s is in VFτ1...τn .

‚ Falsification: s falsifies Fτ1 . . . τn if and only if s is in FFτ1...τn .11

Here are the truth conditions for negations of formulas.

Negation

Let s be a state in S, and let φ be a sentence.

‚ Verification: s verifies  φ if and only if s falsifies φ.

‚ Falsification: s falsifies  φ if and only if s verifies φ.
11This is one of the main places where I am eliding some important formal details. If any of the terms in

the expression Fτ1 . . . τn are variables, then it only makes sense to say that a certain state verifies or falsifies
Fτ1 . . . τn relative to a particular assignment of objects to those variables; that is, relative to a particular
variable assignment. Again, the details of this are in Appendix B.
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Here are the truth conditions for conjunctive formulas.

Conjunction

Let s be a state in S, and let φ and ψ be sentences.

‚ Verification: s verifies φ^ ψ if and only if there are states t and u in S such that

t Ď s, u Ď s, t verifies φ, and u verifies ψ.

‚ Falsification: s falsifies φ ^ ψ if and only if for some state t in S such that t Ď s,

either t falsifies φ or t falsifies ψ.

Here are the truth conditions for disjunctive formulas.

Disjunction

Let s be a state in S, and let φ and ψ be sentences.

‚ Verification: s verifies φ _ ψ if and only if for some state t in S such that t Ď s,

either t verifies φ or t verifies ψ.

‚ Falsification: s falsifies φ_ψ if and only if there are states t and u in S such that

t Ď s, u Ď s, t falsifies φ, and u falsifies ψ.

Here are the truth conditions for universally quantified formulas.

Universal

Let s be a state in S, let χ be a variable, and let φpχq be a formula in which only χ

appears free.

‚ Verification: s verifies @χφpχq if and only if for each object o in I, there is a state

t in S such that t Ď s and when χ is interpreted as denoting o, t verifies φpχq.

‚ Falsification: s falsifies @χφpχq if and only if for some object o in I, there is a state
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t in S such that t Ď s and when χ is interpreted as denoting o, t falsifies φpχq.

Here are the truth conditions for existentially quantified formulas.

Existential

Let s be a state in S, let χ be a variable, and let φpχq be a formula in which only χ

appears free.

‚ Verification: s verifies Dχφpχq if and only if for some object o in I, there is a state

t in S such that t Ď s and when χ is interpreted as denoting o, t verifies φpχq.

‚ Falsification: s falsifies Dχφpχq if and only if for each object o in I, there is a state

t in S such that t Ď s and when χ is interpreted as denoting o, t falsifies φpχq.

Together, these six conditions provide a complete theory of truth and falsity for sentence of

first-order logic. These conditions, along with the Complete Lattice theory of states, comprise

what I have been calling ‘Statespace’.

For an example application of Statespace, consider the sentence ‘Pa^Qb’. As before,

suppose that ‘P ’ represents the property of being green, and suppose that ‘a’ denotes grass.

In addition, suppose that ‘Q’ represents the property of being red, and suppose that ‘b’

denotes roses. Let r1 be the state of grass being green, and let r2 be the state of roses being

red. Then by Existence of Least Upper Bound, the condition from Section 2, there exists

a least upper bound of r1 and r2; namely, r1 [ r2. Now, according to the above condition

Conjunction, the state r1 [ r2 verifies ‘Pa^Qb’ if and only if for some t Ď r1 [ r2 and some

u Ď r1 [ r2, t verifies ‘Pa’ and u verifies ‘Qb’. In other words, r1 [ r2 verifies the sentence

“Grass is green and roses are red” just in case r1 [ r2 contains a part which verifies “Grass is

green” and a part which verifies “Roses are red.” And that is indeed the case. To see why, for

starters, note that r1 [ r2 contains both the state r1 and the state r2 as parts: this follows

from the definition of least upper bound. In addition, the above condition Atomic implies
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that r1 verifies ‘Pa’, since the state of grass being green is in the cone VPa. Atomic also

implies that r2 verifies ‘Qb’, since the state of roses being red is in the cone VQb. Therefore,

the state of grass being green and roses being red – that is, r1 [ r2 – verifies the sentence

“Grass is green and roses are red” – that is, ‘Pa^Qb’.

Statespace is similar to standard theories of situation semantics (Barwise, 1981; Barwise

& Perry, 1983; Kratzer, 1989; 2012). But there are some important differences. For example,

Kratzer’s theory does not assume the existence of greatest lower bounds or least upper

bounds. And the truth conditions in Kratzer’s theory do not invoke parts of states; not, that

is, in the direct way that the truth conditions in Statespace do.

Actually, as discussed in Section 9, this latter difference is one of the most unique

aspects of Statespace. According to Statespace, any given sentence is verified or falsified by a

state just in case, very roughly put, the parts of that sentence are verified or falsified by the

parts of that state. According to most all other theories of states and truth, however, certain

kinds of sentences are verified or falsified by a state just in case, very roughly put, the parts of

those sentences are verified or falsified by that state itself, rather than that state’s parts. And

this difference between Statespace and those other theories—which I discuss in much more

detail in Section 9—turns out to be extremely important. For it is what allows Statespace,

along with a particular analysis of content, to imply that the contents of sentences in L

are determined by cones. So this difference is responsible for the simple, clear, and elegant

account of content which Statespace supports.

Universal and Existential differ from the truth conditions, for quantifies, endorsed by

other theories of states and truth in the literature (Elgin, 2021, p. 8; Fine, 2017c, p. 568).

Other truth conditions invoke totality states, that is, states which say exactly what indi-

viduals exist. Roughly put, according to those other conditions, a verifier of a universal is

a fusion of (i) states which verify that universal’s instances, along with (ii) a totality state

which says that the objects in those instances are all the object that there are. Similarly for

falsifiers of universals, and for verifiers and falsifiers of existentials.
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Because they contain totality states as parts, each verifier s of a universal—according

to those other truth conditions—necessitates the truth of that universal. For each such s

contains (i) verifiers of that universal’s instances, and (ii) a state which says that the objects

in those instances are all the objects in existence. By (i), each instance of that universal is

verified by a part of s. By (ii), there are no other instances of that universal apart from the

instances covered in (i). So that universal must be true, if s obtains.

I dislike this feature of totality states; so I do not include them in Universal and Ex-

istential. Quantificational sentences in first-order logic can be made true, or made false,

without being made necessarily true or necessarily false. In my view, the main reason to

accept that verifiers necessitate what they verify—and that falsifiers necessitate what they

falsify—is metaphysical: it is based on a particular conception of what sorts of things states

are, and how their mere existences make truths and falsehoods hold necessarily (Armstrong,

2004). And as mentioned in Section 2, in this paper, I do not adopt any particular meta-

physical view of states. I am interested in characterizing the semantic relations of verification

and falsification, and in using that characterization to analyze a host of notions related to

meaning. And from the perspective of that project, it is at best unrequired—and at worst

misguided—to adopt posits about relations of metaphysical necessitation between states and

sentences of first-order logic.12

Nevertheless, totality states can be easily added to the truth conditions above. Just

change Universal so that it requires verifiers and falsifiers of universals to contain totality

states as parts, and change Existential similarly. The reader is welcome to adopt this char-
12Here is another argument for thinking that totality states should not figure in the verification and

falsification conditions for quantifiers. Insisting that verifiers necessitate universals is like insisting that set-
theoretic models—from the standard account of the truth conditions of sentences in first-order logic, which is
based on set theory—necessitate universals. But that would be bizarre. It would be bizarre if those models
necessitated the truths of quantificational sentences, perhaps due to an “And that’s all” totality clause in
their set-theoretic truth conditions. Model theorists, in the early days of model theory, did not adopt any
clauses like that in their semantics. And they were right not to, since they were engaged in the semantical
project of providing truth conditions, not in the metaphysical project of capturing relations of metaphysical
necessitation. Similarly, we should not adopt any clauses about metaphysically necessitating totalities in our
theories of states and truth, since those theories are engaged only in the semantical project of characterizing
relations of verification and falsification.
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acterization of those truth conditions, if they prefer it.

Despite its relative simplicity, Statespace is extremely powerful. It can be used to

analyze many different notions related to meanings. In what follows, I focus on thirteen in

particular. Then I compare Statespace to other theories of how states verify, and falsify,

sentences in first-order logic; as will become clear, there are several reasons for preferring

Statespace over those other theories.

4 Contents, Propositions, and Parts

In this section, I use Statespace to analyze the contents of first-order sentences. On

the basis of that analysis, I propose an analysis of what propositions are. Then I propose

analyses of three different kinds of partial content. Along the way, I discuss some attractive,

interesting, and elegant consequences of the conditions in the previous sections.

By way of preparation, here are definitions of two different kinds of sets. First, for each

sentence φ in L, let Vφ be the set of all states which verify φ. Second, for each sentence φ in

L, let Fφ be the set of all states which falsify φ.13 So intuitively, Vφ contains all and only the

states which make φ true, and Fφ contains all and only the states which make φ false.

It turns out that for each sentence φ, the sets Vφ and Fφ have an extremely nice

feature. In order to explain what that feature is, however, another definition will be needed:

the definition describes a certain way in which a cone, in S, may be ‘as big as possible’. So

let S and Ď jointly form a complete, well-founded lattice. Let A be a subset of S, and let C

be a subset of A. Then C is a ‘maximal cone in A’ just in case the following conditions hold.

1. C is a cone.

2. For every cone C 1 which is a subset of A and which contains C, C is identical to C 1.

In other words, a cone C is maximal in A just in case there is no cone which is both (i) a
13Of course, Vφ and Fφ are defined relative to some particular model; that is, relative to some particular

choice of a set of states S, a partial order Ď, and so on. In this section, and in the sections to come, I suppress
most mention of the background models which supply the verifiers and falsifiers for the sentences in question.
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subset of A, and (ii) strictly larger than C, in the sense that it contains C as a proper subset.

So a cone is maximal, in a subset, just in case there is no way to make that cone bigger,

while still keeping it in that subset. The cone is, in that sense, ‘as big as possible’.

For example, recall the sentence ‘Pa’, where ‘P ’ expresses the property of being green

and ‘a’ denotes grass. As mentioned in Section 3, both VPa and FPa are cones. As a simple

proof shows, VPa is a maximal cone in VPa, and FPa is a maximal cone in FPa. That is, each

of VPa and FPa is a maximal cone in itself.

Now for the extremely nice feature which every set Vφ, and every set Fφ, has.

Theorem 1. For each sentence φ, Vφ is a union of cones which are maximal in Vφ, and Fφ

is a union of cones which are maximal in Fφ.

The fully rigorous derivation of this result is quite complicated; see theorem C.2 in Appendix

C for the proof. But the basic idea can be illustrated by a simple example. As before, let

‘Pa’ be a sentence which says that grass is green, and let ‘Qb’ be a sentence which says that

roses are red. Here is a visual representation of the verifiers, and falsifiers, of the sentence

‘Pa_Qb’.

Verifiers

vPa vQb

Falsifiers

fPa_Qb

The area enclosed by the solid lines on the left represents VPa_Qb. The area enclosed by

the solid lines on the right represents FPa_Qb. Both areas can be represented as unions of
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cones which are maximal in VPa_Qb and FPa_Qb, respectively. For instance, the area which

represents VPa_Qb is the union of two cones which are maximal in VPa_Qb. One cone, whose

point is vPa, contains the states in which grass is green. The other cone, whose point is

vQb, contains the states in which roses are red. Together, their union is the collection of all

states in which grass is green or roses are red: namely, VPa_Qb.14 Similarly, the area which

represents FPa_Qb is the union of a single cone which is maximal in FPa_Qb. The point of

this cone is the state of grass not being green and roses not being red. And its union—or

more simply, the cone itself—is FPa_Qb.15

Theorem 1 is, in many ways, the keystone of my approach to states, truth, and meaning

for sentences in first-order logic. As shown in the rest of this section, that theorem supports

simple and attractive analyses of content, propositions, and partial content. And as shown

in later sections, that theorem supports many other simple and attractive analyses, including

analyses of exact verification, exact falsification, subject matter, entailment, logical subtrac-

tion, and more. So it is hard to overstate the importance of this theorem. It provides the

foundation for all that is to come.

Now for the analysis of content. Basically, it says that the content of a first-order sen-

tence consists of the verifiers and falsifiers of that sentence.

Content

Let φ be a sentence in L. The content of φ is the pair of sets xVφ, Fφy.

In other words, the content of a sentence is a pair containing (i) that sentence’s verifiers, and

(ii) that sentence’s falsifiers. Say that Vφ is the ‘positive content’ of φ, and say that Fφ is the
14Each dashed line represents that portion of a maximal cone’s boundary which is contained in another

maximal cone. The dashed line pointing upwards and to the left from vQb, for instance, represents the
portion of that maximal cone’s boundary—the cone whose point is vQb—which is contained in the maximal
cone whose point is vPa.

15A straightforward but technical exercise shows that this picture is, in general, an accurate depiction of
the structure of the sets VPa_Qb and FPa_Qb. In particular, it can be shown that so long as VPa is not a
subset of VQb and VQb is not a subset of VPa, VPa_Qb contains exactly two distinct cones which are maximal
in VPa_Qb. And it can be shown that FPa_Qb always contains exactly one cone which is maximal in FPa_Qb.
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‘negative content’ of φ.

For example, take the sentence “Grass is green”: namely, ‘Pa’. VPa is the set of all

states which make that sentence true. FPa is the set of all states which make that sentence

false. And together, the pair xVPa, FPay is the content of ‘Pa’; that pair is the content of

the sentence “Grass is green.” VPa is the positive content of that sentence, and FPa is the

negative content of that sentence.

There is much to like about Content. For starters, it is intuitively plausible. It says

that the content of a sentence consists of all the different ways of (i) making that sentence

true, and (ii) making that sentence false. To put it another way: if a worldly state fails to

determine the truth value of a sentence, then that state does not contribute to that sentence’s

content. And that is, of course, extremely plausible. It makes sense to claim that if something

has no effect on whether a sentence is true or false, then that something is not in the content

of that sentence.

In addition, Content implies that classically logically equivalent formulas often have

distinct contents. For example, consider the sentence ‘Pa _  Pa’ which says that either

grass is green or grass is not green. And consider the sentence ‘Qb _  Qb’ which says that

either roses are red or roses are not red. Given classical truth conditions, these sentences are

logically equivalent. And given Content, the contents of these sentences are distinct. For

some verifiers of ‘Pa _  Pa’ neither verify nor falsify ‘Qb _  Qb’. The state of grass being

green, for example, verifies the former but neither verifies nor falsifies the latter. So these

sentences have different contents.

That is, intuitively, the right result. The sentence ‘Pa _  Pa’ is about grass being

green or not green. It is not about roses at all. And the sentence ‘Qb_ Qb’ is about roses

being red or not red. It is not about grass at all. These sentences are clearly about different

things. They have different meanings. And Content respects all that.

As a simple proof shows, Content implies that ‘Pa’ and ‘Pa _ pPa ^ Qbq’ have

the same content. One might take that to be problematic. This identification is, after
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all, often rejected in the literature on states, verification, and falsification. For when com-

bined with two assumptions about counterfactuals—one called ‘Simplification’ and one called

‘Substitution’—this identification has unintuitive results (Deigan, 2020, p. 525; Fine, 2017c,

p. 571). So one might conclude that this identification should be rejected.

A full response to this objection will have to wait until Section 7. In that section, I use

Statespace to formulate truth conditions for counterfactuals. Those conditions, along with

the account of entailment given in Section 6, imply that Simplification is false. That result,

moreover, is quite well-motivated: many standard semantics for counterfactuals imply the

falsity of Simplification. So ultimately, it is perfectly fine that ‘Pa’ and ‘Pa _ pPa ^ Qbq’

have the same content.

Now for the analysis of propositions. Basically, the analysis says that propositions are

pairs of sets which are, themselves, unions of maximal cones.

Proposition

P is a proposition if and only if P is a pair xPV ,PF y such that

(i) PV and PF are sets of states,

(ii) PV is a union of cones which are maximal in PV , and

(iii) PF is a union of cones which are maximal in PF .

In other words, propositions are pairs, the elements of which are unions of maximal cones.

For each proposition P “ xPV ,PF y, a state makes that proposition true just in case that

state is in PV , and that state makes that proposition false just in case that state is in PF . In

what follows, call the states in PV the ‘verifiers’ of P , and call the states in PF the ‘falsifiers’

of P . In addition, say that PV is the ‘positive content’ of P , and say that PF is the ‘negative

content’ of P .

Proposition is an extremely attractive analysis of propositions. Along with Con-

tent, it implies that the contents of sentences are propositions; that is, obviously, an attrac-
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tive result. It also allows for two propositions to hold at exactly the same worlds, and yet

not be identical; for reasons similar to those given above, in the discussion of the contents of

‘Pa_ Pa’ and ‘Qb_ Qb’, that is an attractive result too.

There are several different kinds of parthood relations among propositions, and there-

fore, among the contents of sentences. In this section, I analyze three of them. The analyses

are based on the ways in which (i) the maximal cones that comprise one proposition, may

relate to (ii) the maximal cones that comprise another proposition. And together, they cap-

ture three different ways in which the content of one sentence may be part of the content of

another sentence.16

Before continuing, it is worth making an observation about the points of maximal cones.

Suppose that a cone is maximal in the set of verifiers Vφ of a sentence φ. Then the point of

that cone is one of the smallest states which makes φ true, in the sense that it makes φ true

but no proper part of it does. Similarly, suppose that a cone is maximal in the set of falsifiers

Fφ of a sentence φ. Then the point of that cone is one of the smallest states which makes φ

false, in the sense that it makes φ false but no proper part of it does. In other words, to put

it roughly but perhaps more intuitively, the points of maximal cones in sets of verifiers – or

falsifiers – are themselves the smallest verifiers – or falsifiers – that there are.

Now for the first two parthood conditions. The first says what it takes for one propo-

sition’s positive content to be part of another proposition’s positive content. The second

says what it takes for one proposition’s negative content to be part of another proposition’s

negative content.

Positive Partial Content

Let P “ xPV ,PF y and Q “ xQV ,QF y be propositions. Then the positive content of P

is part of the positive content of Q if and only if the following two conditions hold.
16In this paper, I restrict my discussion to parthood relations among states and among propositions. I do

not discuss parthood relations among related—though importantly distinct—items, such as the attitudinal
objects discussed in (Moltmann, 2017).
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(i) For every cone CP which is maximal in PV and which has point cP , there is a

cone CQ such that (a) CQ is maximal in QV , and (b) CQ has a point cQ such that

cP Ď cQ.

(ii) For every cone CQ which is maximal in QV and which has point cQ, there is a

cone CP such that (a) CP is maximal in PV , and (b) CP has a point cP such that

cP Ď cQ.

Negative Partial Content

Let P “ xPV ,PF y and Q “ xQV ,QF y be propositions. Then the negative content of P

is part of the negative content of Q if and only if the following two conditions hold.

(i) For every cone CP which is maximal in PF and which has point cP , there is a

cone CQ such that (a) CQ is maximal in QF , and (b) CQ has a point cQ such that

cP Ď cQ.

(ii) For every cone CQ which is maximal in QF and which has point cQ, there is a

cone CP such that (a) CP is maximal in PF , and (b) CP has a point cP such that

cP Ď cQ.

Roughly put, Positive Partial Content says that the positive content of P is part of

the positive content of Q just in case (i) every smallest verifier of P is part of some smallest

verifier of Q, and (ii) every smallest verifier of Q contains some smallest verifier of P as a

part. And roughly put, Negative Partial Content says that the negative content of P

is part of the negative content of Q just in case (i) every smallest falsifier of P is part of some

smallest falsifier of Q, and (ii) every smallest falsifier of Q contains some smallest falsifier of

P as a part.

The following terminology will be helpful. The positive content of sentence φ ‘is part

of’ the positive content of sentence ψ just in case (i) φ expresses some proposition Pφ, (ii)

ψ expresses some proposition Pψ, and (iii) the positive content of Pφ is part of the positive
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content of Pψ. Similarly, the negative content of sentence φ ‘is part of’ the negative content of

sentence ψ just in case (i) φ expresses some proposition Pφ, (ii) ψ expresses some proposition

Pψ, and (iii) the negative content of Pφ is part of the negative content of Pψ.

The picture below will help illustrate the general idea behind Positive Partial Con-

tent; an entirely analogous picture would illustrate the general idea behind Negative Par-

tial Content too. Let P “ xCP
V ,PF y and Q “ xCQ

V ,QF y be propositions such that CP
V is

a cone with point cPV and CQ
V is a cone with point cQV . Suppose that according to Positive

Partial Content, the positive content of P is part of the positive content of Q; in the

present example, this is equivalent to supposing that cPV Ď cQV . Then the following picture

illustrates how the verifiers of P and the verifiers of Q relate to one another.

cPV

cQV

The lines beginning at cPV , and the space between them, jointly represent the cone CP
V . The

lines beginning at cQV , and the space between them, jointly represent the cone CQ
V . And the

line segment running from cPV to cQV represents something else as well: it represents the fact

that cQV contains cPV as a part. Moreover, as a simple formal exercise shows, it follows that

every state in CQ
V contains cPV as a part; that, too, is represented by the line segment running

from cPV to the cone CQ
V .

Positive Partial Content and Negative Partial Content have many attrac-

tive implications. For example, intuitively, the positive content of ‘Pa’ is part of the positive

content of ‘Pa^Qb’. And as a simple argument shows, Positive Partial Content gets

that right. Similarly, intuitively, the negative content of ‘Pa _ Qb’ is part of the negative
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content of ‘Pa’. Negative Partial Content gets that right. And intuitively, ‘Pa’ is

neither part of the positive content, nor part of the negative content, of ‘Pa_Qb’. Positive

Partial Content and Negative Partial Content imply that too.17

Now for the third parthood condition. Basically, this condition says what it takes for one

proposition’s content—rather than just its positive content or negative content specifically—

be part of another proposition’s content.

Partial Content

Let P and Q be propositions. Then P is part of Q if and only if

(i) the positive content of P is part of the positive content of Q, and

(ii) the negative content of P is part of the negative content of Q.

In other words, one proposition is part of another just in case the positive and negative

contents of the former are parts of the positive and negative contents of the latter, respectively.

Partial Content is an intuitively plausible analysis of parthood among propositions.

It makes sense to say that one proposition only counts as part—completely part—of another

just in case the former’s positive content and negative content are parts of the latter’s positive

content and negative content, respectively. It makes sense to say, in other words, that one

proposition is part of another just in case the above correspondences obtain between the

points of the maximal cones that comprise the former and the points of the maximal cones

that comprise the latter.

5 Exact Verification, Exact Falsification, Subject Matter, and Aboutness

In this section, I use Statespace to analyze exact verification, exact falsification, subject

matter, and the aboutness relation. Along the way, I discuss some more nice consequences
17Consequently, these accounts of partial content satisfy the desiderata outlined in (Gemes, 1994; 1997).
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of the conditions in the previous sections.

To start, here is the analysis of exact verification.

Exact Verification

Let φ be a sentence in L, and let s be a state. Then s exactly verifies φ if and only if

(i) s verifies φ, and

(ii) for all states r such that r Ĺ s, r does not verify φ.

In other words, the exact verifiers of a sentence are the smallest states which verify that

sentence. And here is the analysis of exact falsification.

Exact Falsification

Let φ be a sentence in L, and let s be a state. Then s exactly falsifies φ if and only if

(i) s falsifies φ, and

(ii) for all states r such that r Ĺ s, r does not falsify φ.

In other words, the exact falsifiers of a sentence are the smallest states which falsify that

sentence.

There is debate, in the literature, over whether theories of states and truth can (i)

use the relations of verification and falsification to analyze the relations of exact verification

and exact falsification, or (ii) use the relations of exact verification and exact falsification to

analyze the relations of verification and falsification (Deigan, 2020, p. 524; Fine, 2017c, p.

565). As Exact Verification and Exact Falsification show, (i) is perfectly viable.

The exact verifiers of a sentence can be analyzed in terms of verification more generally, and

the exact falsifiers of a sentence can be analyzed in terms of falsification more generally.18

18This is not to say, of course, that (ii) cannot be done as well. I suspect, actually, that both (i) and (ii)
can be done. That is, I suspect that verification and falsification on the one hand, and exact verification and
exact falsification on the other, are inter-analyzable: either pair of relations, when posited primitively, could
be used to analyze the others.
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Now for subject matter. By way of preparation, for each sentence φ, and for each cone

C which is maximal in Vφ, let vC be the point of C. Let vφ be the least upper bound of all

these vC . Similarly, for each sentence φ, and for each cone C which is maximal in Fφ, let fC

be the point of C. Let fφ be the least upper bound of all these fC . Then subject matter is

analyzed as follows.

Subject Matter

Let φ be a sentence in L. The subject matter of φ is the pair xvφ, fφy.

In other words, the subject matter of a sentence is a pair consisting of (i) the fusion of all the

different smallest ways of making that sentence true, and (ii) the fusion of all the different

smallest ways of making that sentence false. In what follows, call vφ the ‘positive subject

matter’ of φ, and call fφ the ‘negative subject matter’ of φ.

Subject Matter has several attractive implications. For instance, it implies that

the subject matters of sentences play a role in determining those sentences’ truth values. In

particular, given Subject Matter, the positive subject matter of a sentence verifies that

sentence, and the negative subject matter of a sentence falsifies that sentence. That is, as

proved in Appendix D, the following theorem holds.

Theorem 2. Let φ be a sentence with subject matter xvφ, fφy. Then vφ is in Vφ and fφ is in

Fφ.

And this is the intuitively correct result. For intuitively, the positive subject matter of a

sentence should make that sentence true, and the negative subject matter of a sentence

should make that sentence false. The subject matter of a sentence, in other words, should

not be utterly unrelated to that sentence’s truth value. And Subject Matter is attractive,

insofar as it implies exactly that.
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Finally, here is the analysis of the aboutness relation: the relation, that is, which ob-

tains between sentences and what they are about.

Aboutness

Let φ be a sentence in L. Then φ is about its subject matter xvφ, fφy.

In other words, sentences are about their subject matters. In what follows, I will say that φ

is ‘positively about’ vφ, and I will say that φ is ‘negatively about’ fφ.

Unlike other theories of the aboutness relation (Yablo, 2014, p. 43), Aboutness implies

that a sentence and its negation are about different things. The sentence “Grass is green”

is positively about grass being green, for instance, and the sentence “Grass is not green” is

positively about grass not being green. That is a feature of Aboutness, not a bug. It is

unintuitive, I think, to claim that sentences and their negations are about exactly the same

things. Intuitively, if a sentence is about some particular way for things to be, then the

negation of that sentence is about things not being that way. So intuitively, sentences and

their negations are about different things. Aboutness is attractive, since it respects that.

6 Entailment and Containment

In this section, I analyze two more relations among propositions: the relation of en-

tailment, and the relation of containment. As will become clear, there is a precise sense in

which these analyses are complete. Roughly put, they exhaust all four of the different ways

in which sets of verifiers and falsifiers might be among other sets of verifiers and falsifiers,

respectively.

Here is the analysis of entailment. Basically, it says that one proposition entails another

just in case (i) every way of making the first true is a way of making the second true, and
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(ii) every way of making the second false is a way of making the first false.

Entailment

Let P “ xPV ,PF y and Q “ xQV ,QF y be propositions. Then P entails Q if and only if

(i) for all states s in PV there is a state r in QV such that r Ď s, and

(ii) for all states s in QF there is a state r in PF such that r Ď s.

In other words, equivalently, P entails Q if and only if PV is a subset of QV and QF is a

subset of PF .19 Note that in what follows, I adopt the following terminology: sentence φ

‘entails’ sentence ψ just in case the content of φ entails the content of ψ.

For example, let φ and ψ be sentences in L. Then φ ^ ψ entails φ. For by the truth

condition Conjunction, given any state s in Vφ^ψ, there is a state r in Vφ such that r Ď s.

The truth condition Conjunction also implies that given any state s in Fφ, there is a state r

in Fφ^ψ such that r Ď s: just let r be s itself. So by Entailment, φ^ ψ entails φ.

Entailment does a good job of capturing the intuitive notion of entailment. To see

why, note that intuitively, if one sentence entails another then the truth of the former guaran-

tees the truth of the latter. Entailment respects that: for according to (i) in Entailment,

if one sentence entails another then the truth of the former guarantees the truth of the latter,

insofar as anything which makes the former true must have a part which makes the latter

true too. Similarly, note that intuitively, if one sentence entails another then the falsity of

the latter guarantees the falsity of the former. Entailment respects that as well: for ac-

cording to (ii) in Entailment, if one sentence entails another then the falsity of the latter

guarantees the falsity of the former, insofar as anything which makes the latter false must

have a part which makes the former false too.

Now for the analysis of containment. Basically, the analysis says that one proposition is

contained in another just in case (i) every way of making the second true is a way of making
19For the key result in the simple proof that this biconditional is equivalent to the biconditional in En-

tailment, see theorem C.1 in Appendix C.
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the first true, and (ii) every way of making the second false is a way of making the first false.

Containment

Let P “ xPV ,PF y and Q “ xQV ,QF y be propositions. Then P is contained in Q if

and only if

(i) for all states s in QV there is a state r in PV such that r Ď s, and

(ii) for all states s in QF there is a state r in PF such that r Ď s.

In other words, equivalently, P is contained in Q if and only if QV is a subset of PV and QF

is a subset of PF .20 Note that in what follows, I adopt the following terminology: sentence

φ ‘is contained in’ sentence ψ just in case the content of φ is contained in the content of ψ.

The containment relation, as described by Containment, is connected to the parthood

relation described by Partial Content. In particular, if Partial Content implies that

proposition P is part of proposition Q, then Containment implies that P is contained in

Q too.21 The reverse, however, does not hold: there are propositions P and Q such that (i)

Containment implies that P is contained in Q, and yet (ii) Partial Content implies

that P is not part of Q.22

Together, Entailment and Containment support an elegant classification of four

different subset relations among verifiers, and among falsifiers, of different propositions. To

understand exactly how, take any two propositions P “ xPV ,PF y and Q “ xQV ,QF y. And

consider the following four different ways in which (i) one of these propositions’ verifiers

might be among the other propositions’ verifiers, and (ii) one of these propositions’ falsifiers

might be among the other propositions’ falsifiers.

(1) PV Ď QV and QF Ď PF .

(2) QV Ď PV and QF Ď PF .
20Theorem C.1, in Appendix C, is the key result which supports the proof that this biconditional is

equivalent to the biconditional in Containment.
21For the proof, see theorem E.3 in Appendix E.
22For the proof, see theorem E.4 in Appendix E.
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(3) QV Ď PV and PF Ď QF .

(4) PV Ď QV and PF Ď QF .

As a simple proof shows, Entailment and Containment imply the following: each of (1)–

(4) corresponds to an instance of the entailment relation or an instance of the containment

relation. Here is how.

(1) PV Ď QV and QF Ď PF if and only if P entails Q.

(2) QV Ď PV and QF Ď PF if and only if P is contained in Q.

(3) QV Ď PV and PF Ď QF if and only if Q entails P .

(4) PV Ď QV and PF Ď QF if and only if Q is contained in P .

So Entailment and Containment are, in a sense, exhaustive. There are four combinations

of ways in which the verifiers and falsifiers of one proposition might be among, or might

include, the verifiers and falsifiers of another proposition, respectively: namely, the ways listed

in (1)–(4) above. Each of those four ways corresponds to a distinct instance of the entailment

relation, or the containment relation, obtaining between the propositions in question.

This exhaustive correspondence is, I think, an extremely attractive feature of the present

approach to propositions, entailment, and containment. The relations of entailment and

containment capture the four different ways in which one proposition’s verifiers and falsifiers

might be among, or might include, another proposition’s verifiers and falsifiers, respectively.

And that is a nice consequence of the present approach to meaning in first-order logic.

7 Counterfactuals

Statespace provides a basis from which to formulate truth conditions for counterfactuals.

In this section, I present those conditions. Then I use them to defend Statespace—and

also Content—against an objection mentioned earlier. Finally, I briefly compare those

conditions to other accounts of the semantics of counterfactuals.

The truth conditions rely on a ‘comparative similarity’ relation among states. Basically,
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this relation captures context-dependent facts about some states being more similar to certain

states than to others.23 In other words, context fixes a relation of comparative similarity

among states. Then that relation can be used to say, for any three states, whether or not

the first is more similar to the second or to the third (in that context).

For example, consider the following three states: the state of grass being green, the

state of grass being turquoise, and the state of grass being red. In the present context, the

first state is more similar to the second state than to the third state. The state of grass being

green, in this context, is more similar to the state of grass being turquoise than to the state

of grass being red. And the comparative similarity relation can be used to capture that.24

Now for the truth conditions for counterfactuals. Basically, they say that the truth

value of a counterfactual is determined by the parts of sufficiently similar states.

Counterfactuals

Let s be a state in S, and let φ and ψ be sentences.

‚ Verification: s verifies φ 2Ñ ψ if and only if for each state t in S such that t

verifies φ and s is more similar to t than to any state which does not verify φ,

there exists a state u in S such that u Ď t and u verifies ψ.

‚ Falsification: s falsifies φ 2Ñ ψ if and only if for some state t in S such that t

verifies φ and s is more similar to t than to any state which does not verify φ,

there exists a state u such that u Ď t and u falsifies ψ.

In other words, a state s makes a counterfactual true just in case for each state which is

sufficiently similar to s and which makes the counterfactual’s antecedent true, that state

contains a part which makes the counterfactual’s consequent true. And a state s makes a

counterfactual false just in case for some state which is sufficiently similar to s and which
23It is analogous to the comparative similarity relation among possible worlds discussed in (Lewis, 1973;

Stalnaker, 1981/1968).
24See Appendix F for a more precise characterization of the comparative similarity relation among states.
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makes the counterfactual’s antecedent true, that state contains a part which makes the

counterfactual’s consequent false.

For example, consider the sentence ‘Wc 2Ñ Lc’. Suppose that ‘W ’ represents the

property of waking up after 9am on July 1 in the year 2021, and suppose that ‘c’ denotes

Charlie. So ‘Wc’ says that Charlie wakes up after 9am on that particular day. In addition,

suppose that ‘L’ represents the property of being late to a meeting at noon. So ‘Lc’ says

that Charlie is late to the meeting. And therefore, ‘Wc 2Ñ Lc’ says “If Charlie had woken

up after 9am, then Charlie would have been late to the meeting.” Let s be a state which

describes everything that happens in Charlie’s life up to noon on July 1, 2021: so s contains

the state of Charlie waking up at 8am on that day; and as a consequence, in s, Charlie is

not late. To keep things simple, suppose that there is just one state t such that (i) t verifies

‘Wc’, and (ii) s is more similar to t than to any state which does not verify ‘Wc’. So t is

more-or-less exactly like s up to 8am, but regarding events after that time, t and s disagree:

in particular, in t, Charlie sleeps past 9am. And let u be the state of Charlie being late to the

meeting. Then plausibly, t contains u as a part. So according to Counterfactuals, s verifies

‘Wc 2Ñ Lc’: that is, s makes the sentence “If Charlie had woken up after 9am, then Charlie

would have been late to the meeting” true.

Let us now return to an objection from Section 4. The objection, recall, was this. Given

Statespace—and Content in particular—it follows that ‘Pa’ and ‘Pa_pPa^Qbq’ have the

same content. But that, along with two assumptions about counterfactuals, has extremely

unintuitive implications. The two assumptions are below.

Simplification

For all sentences φ, ψ, and χ, pφ_ χq 2Ñ ψ entails φ 2Ñ ψ.

Substitution

For all sentences φ, ψ, and χ, if φ and χ have the same content then φ 2Ñ ψ entails
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χ 2Ñ ψ.

A simple proof shows that if ‘Pa’ and ‘Pa _ pPa ^ Qbq’ have the same content, then given

Simplification and Substitution, the following holds: for all sentences χ, ‘Pa 2Ñ χ’ entails

‘pPa^Qbq 2Ñ χ’. And that, obviously, is a terrible result. As many examples in the literature

have shown, strengthening the antecedent of a counterfactual does not always preserve that

counterfactual’s truth value. The counterfactual “If Charlie had woken up after 9am, then

Charlie would have been late to the meeting” may be true, for example, even though the

counterfactual “If Charlie had woken up after 9am and the meeting had been moved to the

evening, then Charlie would have been late to the meeting” is false.

Now that I have presented the truth conditions for counterfactuals, I can reply to this

objection. The reply is simple: Counterfactuals and Entailment imply that Simplification

is false. For consider the counterfactual below.25

(S): “If Spain had fought for either the Allies or the Axis, then Spain would have fought

for the Axis.”

And consider another counterfactual.

(S˚): “If Spain had fought for the Allies, then Spain would have fought for the Axis.”

According to Simplification, (S) entails (S˚). But Counterfactuals, along with Entailment,

contradict that. To see why, let s be the state which describes the actual world; note that for

historical reasons, s verifies (S). Then take a state t such that (i) t verifies “Spain fought for

the Allies,” and (ii) s is more similar to t than to any state which does not verify “Spain fought

for the Allies.” Then plausibly, t does not contain a state which verifies “Spain fought for the
25This counterfactual is discussed in (Loewer, 1976; McKay & van Inwagen, 1977).
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Axis” as well.26 So by Counterfactuals, s does not verify (S˚). And so by Entailment, (S)

does not entail (S˚). Therefore, Simplification is false.

This response, to the objection above, is in good company. Lewis’s truth conditions

for counterfactuals (1973), and Stalnaker’s too (1981/1968), reject Simplification. Of course,

there are significant differences between Counterfactuals—and Statespace more generally—

and the truth conditions that Lewis and Stalnaker endorse: the latter are based on possible

worlds rather than states, for instance. But my approach, based on Statespace, retains one of

the core insights of the Lewis/Stalnaker approach: principles like Simplification fail because

of the role that comparative similarity plays in the truth conditions for counterfactuals. It is

a significant point in favor of Counterfactuals and Statespace, I think, that they retain that

core insight.

It is also, in my view, a reason to prefer Counterfactuals over other state-based ap-

proaches to counterfactuals in the literature. Some of those other approaches generally en-

dorse Simplification while giving up Substitution (Fine, 2012, p. 232). My approach shows

that state-based approaches to counterfactuals can do the reverse: generally endorse Substi-

tution while giving up Simplification.27 And because I am persuaded by examples like the

ones based on (S) and (S˚), I prefer state-based accounts of counterfactuals which do that.

8 Logical Subtraction

Statespace can be used to analyze logical subtraction. In this section, I explain how.

By way of preparation, I explain what logical subtraction is, and I formulate two conditions

which will be important in what follows. Then I present the analysis. Finally, I discuss some
26To see why, suppose that t did contain a state like that. Then by (i), t would be a state in which Spain

fought for the Axis and the Allies both. But then (ii) would be false, since obviously, s is more similar to
plenty of states which only verify “Spain fought for the Allies” than to a state which—like t—verifies both
“Spain fought for the Allies” and “Spain fought for the Axis.”

27I myself am unsure of whether to endorse Substitution, though for lack of space, I will not discuss that
here. For more criticisms of state-based approaches to counterfactuals
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of the analysis’ attractive features.

In broad outline, logical subtraction is the operation of removing one proposition from

another. The output of the operation is, intuitively, whatever remains of the second propo-

sition, once the first has been subtracted from it. For example, take the following two

propositions: roses are red; and grass is green and roses are red. Subtract the first from the

second. The result of that subtraction is, intuitively, the proposition that grass is green. For

that is what remains of the second, when the first has been removed from it.

Philosophers often implicitly appeal to logical subtraction. For instance, Wittgenstein

asks what remains of the proposition that I raise my arm, once the proposition that my arm

goes up has been subtracted from it (1986, p. i6ie). Chalmers describes the mental state

of judgment by appealing to subtraction too: the proposition that some mental state is a

judgment, Chalmers claims, is what remains after (i) each proposition describing a mental

state’s phenomenal quality, has been subtracted from (ii) the proposition that the mental

state in question is a belief (1996, p. 174). And Goodman’s characterization of lawlike

sentences can be understood in terms of logical subtraction: the proposition expressed by a

lawlike sentence is whatever remains of the proposition expressed by a sentence about a law,

once any propositions mentioning truth or falsity have been subtracted from the latter (1955,

p. 27).

By way of preparation for the analysis of logical subtraction, I present two conditions

which place additional constraints on the complete, well-founded lattice formed by S and Ď.

The first says that certain states can be ‘factored out of’ greatest lower bounds.

Distributivity

For all subsets A of S, and for all states s in S,
Ů

pA[ sq Ď
`
Ů

A
˘

[ s.28

Here is the second condition; note that ‘0’ represents the greatest lower bound of all the
28A[ s is defined as the set of all states t such that for some a in A, t is a[ s.
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states in S, and ‘1’ represents the least upper bound of all the states in S.

Existence of Complement

For all states s in S, there exists a state sK in S such that s[ sK “ 1 and s\ sK “ 0.

Think of the state sK as the result of subtracting the state s from the state 1. For sK is

the state which yields 1, when fused with s. So in a rough but intuitive sense, sK contains

everything—from all the states in S—which s lacks.

Here is some more terminology. Say that S and Ď jointly form a ‘complete, comple-

mented, distributive, well-founded lattice’ just in case S and Ď jointly form a complete,

well-founded lattice which satisfies the two conditions above.

Now for an important result. As I will explain shortly, the theorem below basically says

that there is a way to define subtraction among states.29

Theorem 3. Suppose that S and Ď form a complete, complemented, distributive, well-

founded lattice. Let x and y be states in S such that x Ď y. Let Zx,y be the set of all

states z such that y “ z [ x. Then y “
`
Ů

Zx,y
˘

[ x.

Roughly put, this theorem says the following. Take any states x and y such that y contains x

as a part. Then there is a unique smallest state which, when fused to x, yields y. That state

is
Ů

Zx,y, where Zx,y contains all and only the states such that y is the fusion of each such

state with x. In other words, intuitively,
Ů

Zx,y is the smallest state containing everything

in y which x lacks.

Think of theorem 3 as saying that there exists an operation of subtraction among

states.30 More precisely, suppose that S and Ď jointly form a complete, complemented,
29For the proof, see theorem G.1 in Appendix G.
30For a nice discussion of why subtraction might be naturally understood in terms of smallest states—as

well as criticisms of an account of logical subtraction due to Hudson (1975)—see (Yablo, 2014, pp. 134–136).
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distributive, well-founded lattice. And take any states x and y such that y contains x as a

part. Then according to theorem 3, there exists a unique state whose fusion with x is identical

to y. It follows that there exists a function which (i) takes in any states x and y such that

x Ď y as inputs, and (ii) outputs a unique state
Ů

Zx,y such that y “
`
Ů

Zx,y
˘

[ x. In other

words, there exists a two-place subtraction operation over all pairs of states for which one

state in the pair is part of the other.

It will be helpful to introduce some more notation and terminology. For any states x

and y such that x Ď y, let py ´1 xq be the state
Ů

Zx,y mentioned in theorem 3. In other

words, ‘´1’ is the operation of subtraction among states. In what follows, I will often refer

to the state y ´1 x as the ‘difference’ between y and x.

With that as background, let us analyze the operation of logical subtraction among

propositions.31 Suppose that the proposition P “ xPV ,PF y is part of the proposition

Q “ xQV ,QF y. Then by Partial Content, a series of parthood relationships obtain

among the points of the maximal cones in PV and QV ; and a series of parthood relationships

obtain among the points of the maximal cones in PF and QF as well. For every point which

is a verifier of one proposition and which contains—or is contained by—a point which is

a verifier of the other proposition, subtract the contained point from the containing point.

Each such state, which results from one of these subtractions, can be used to define a max-

imal cone in S as a whole. Take the union of all those maximal cones, and let ‘QV ´
˚ PV ’

denote this union. Similarly, for every point which is a falsifier of one proposition and which

contains—or is contained by—a point which is a falsifier of the other proposition, subtract

the contained point from the containing point. Each such state, which results from one of

these subtractions, can be used to define a maximal cone in S as a whole. Take the union

of all those maximal cones, and let ‘QF ´
˚ PF ’ denote this union. Then with all that as

background, here is the analysis of the operation ‘´’ of logical subtraction.

31In what follows, I present the basic idea of the analysis; for the fully rigorous analysis, see Appendix G.
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Logical Subtraction

Let P “ xPV ,PF y and Q “ xQV ,QF y be propositions such that P is part of Q. Then

Q´ P “ xQV ´
˚ PV ,QF ´

˚ PF y.

In other words, logical subtraction is the operation of subtracting all (i) contained points in

maximal cones of one proposition, from (ii) all containing points in maximal cones of another

proposition.

For example, let P “ xCP
V , C

P
F y and Q “ xCQ

V , C
Q
F y be the propositions described by

the picture below. The area to the left represents states which are verifiers of P and of Q,

while the area to the right represents states which are falsifiers of P and of Q.

Verifiers

cPV

cQV

cQV ´
1 cPV

Falsifiers

cQF ´
1 cPF

cQF
cPF

As the picture shows—and for the sorts of reasons discussed in Section 4—P is part of Q.

The difference between cQV and cPV is represented by the state cQV ´
1 cPV , and the difference

between cQF and cPF is represented by the state cQF ´
1 cPF . As in previous pictures, for any

two solid lines emanating from a single state, the area between those lines—along with

the lines themselves—represents the maximal cone whose point is that state. And as in

previous pictures, if there is a line—solid or dashed—from one state to another, then the

latter contains the former as a part. So both cPV and cQV ´
1 cPV are parts of cQV , and both cPF

and cQF ´
1 cPF are parts of cQF . The area between the two dashed lines on the left—including

the portion of the area which overlaps the cone whose point is cQV , where the left-most dashed
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line becomes solid—represents the maximal cone whose point is cQV ´
1 cPV . That cone is the

set of verifiers CcQV ´1cPV “ CQ
V ´

˚ CP
V . Analogously, the area between the two dashed lines

on the right represents the maximal cone whose point is cQF ´
1 cPF . That cone is the set

of verifiers CcQF´1cPF “ CQ
F ´

˚ CP
F . So together, these two cones—the ones delimited by the

dashed lines—represent the proposition Q´ P .

For lack of space, I will not discuss Logical Subtraction further. But very briefly,

it is worth pointing out the following virtues of it. First, Logical Subtraction can be

used to define various other subtraction relations which have intuitive implications. For

instance, Logical Subtraction can be used to define a subtraction operation that yields

intuitively correct results for conjunction: this subtraction operation implies that in general,

and in a certain precise sense, the positive content of a conjunct subtracted from the positive

content of a conjunction is the positive content of the other conjunct. In addition, Logical

Subtraction can be used to define a subtraction operation that yields intuitively correct

results for disjunctions: this subtraction operation implies that in general, and in a certain

precise sense, the positive content of a disjunct subtracted from the positive content of a

disjunction is the positive content of the other disjunct.

9 Comparisons

In this section, I compare Statespace to other theories of states and truth—call them

‘orthodox theories’—in the literature. As will become clear, despite some similarities, States-

pace is quite different from orthodox theories. And as I will argue, those differences favor

Statespace.

Before continuing, however, it is worth making a quick disclaimer. Though my discus-

sion of orthodox theories will be critical, I am very sympathetic to the guiding idea which un-

derwrites orthodox theories. According to that guiding idea, truth conditions for first-order

languages should be formulated in terms of states, verification, and falsification; possible
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worlds, in other words, are often not good enough (Fine, 2017a; 2017b; 2017c; Kratzer 1989;

2012). Statespace is a specific implementation of that guiding idea, just as many orthodox

theories are. So ultimately, I think that orthodox theories—in addition to being beautiful

and elegant approaches to semantics in their own right—are hiking in the right direction.

This section is merely for quibbles over the specifics of the route.

Orthodox theories32 posit a set of states S, and a partial order Ď over S, such that S

and Ď jointly satisfy some of the conditions from Section 2. In addition, orthodox theories

use states to formulate verification conditions and falsification conditions, some of which are

equivalent to the conditions from Section 3.33

Nevertheless, there are at least three significant reasons to prefer Statespace over or-

thodox theories. The reasons stem from the fact that Statespace endorses more natural

conditions for conjunctive formulas, disjunctive formulas, and quantificational formulas. Or-

thodox theories place more structural restrictions on what it takes for a state to verify, or

falsify, formulas like those. And as will become clear, those restrictions are unideal.

The first reason concerns quantificational formulas. According to orthodox theories,

whether a state verifies a universal or an existential depends—in large part—on exactly which

constants are in the relevant first-order language. In particular, suppose that the first-order

language contains fewer constants than objects. Then according to the verification conditions

adopted by orthodox theories, a state may verify a sentence of the form “Everything is thus-

and-so” even if, intuitively, it should not. This happens when there are no constants, in

the relevant first-order language, which name the things that are not thus-and-so. Analogous

problems arise for the other truth conditions, for quantifiers, which orthodox theories endorse.

Statespace faces no such problems. For in Statespace, the verification and falsification
32I focus on the theories discussed by Elgin (2021), Fine (2017a; 2017b; 2017c), and others. For lack of

space, I cannot discuss other analogous systems here, such as those formulated by Angell (1977) and Correia
(2016). My criticisms can be adapted into criticisms of those systems too, however.

33For lack of space, I will not discuss the theory of truth and content proposed by Yablo (2014). Yablo’s
theory is based on sets of possible worlds, rather than states. For discussion of why states may be better
than sets of possible worlds, when formulating theories of content, see (Fine, 2020); for replies, see (Yablo,
2018).
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conditions do not mention constants at all. Those conditions only mention (i) objects, and

(ii) ways of interpreting variables. So according to Statespace, whether a state verifies a

universal or an existential does not depend on arbitrary features of the first-order language in

question: it does not matter, for instance, if the first-order language contains fewer constants

than objects.34 And that is a reason to prefer Statespace over orthodox theories.

The second reason, for preferring Statespace, concerns important structural similarities—

that is, important dualities—among the different logical symbols of first-order languages. For

simplicity, let us focus on the duality between conjunction and disjunction.35 According to

Statespace, a state verifies a conjunction just in case that state contains two parts, one of

which verifies one conjunct and one of which verifies the other conjunct. And according to

Statespace, a state verifies a disjunction just in case that state contains a part which verifies

either one disjunct or the other. In other words, according to Statespace, verifying a con-

junction is a matter of having parts which verify both conjuncts, and verifying a disjunction

is a matter of having parts which verify at least one disjunct. So Statespace does a good

job of respecting the truth-functional duality between conjunction and disjunction: in both

cases, verification is a matter of having parts which verify certain dualing combinations of

conjuncts and/or disjuncts.36

34Put more technically, Statespace avoids this problem because it uses variable assignments; see Appendix
B.

35In what follows, I discuss duality informally, as a kind of structural symmetry. For a fully rigorous theory
of duality—in logic, and in other areas too—see (Awodey, 2010).

36Here is another way of thinking about this duality: as a simple but tedious proof shows, there is an
elegant correspondence between (i) the verification and falsification conditions for negation, conjunction, and
disjunction in Statespace, and (ii) the truth conditions for negation, conjunction, and disjunction in the four-
valued logic of Belnap (2019) and Dunn (2019). In particular, the correspondence works like this. Say that
a state stands in relation N to a sentence just in case that state neither verifies nor falsifies that sentence.
Say that a state stands in relation T to a sentence just in case that state verifies, but does not falsify, that
sentence. Say that a state stands in relation F to a sentence just in case that state falsifies, but does not
verify, that sentence. And say that a state stands in relation B to a sentence just in case that state both
verifies and falsifies that sentence. Call these the ‘truth-relevance’ relations. Then the following holds: for
all states s and all sentences φ and ψ,

(i) if s stands in a given truth-relevance relation R to φ then s stands in the truth-relevance relation R1
to  φ given by the Belnap-Dunn truth table for negation,

(ii) if s stands in a given truth-relevance relation R to φ and s stands in a given truth-relevance relation
R1 to ψ then s stands in the truth-relevance relation R2 to φ ^ ψ given by the Belnap-Dunn truth
table for conjunction, and

(iii) if s stands in a given truth-relevance relation R to φ and s stands in a given truth-relevance relation
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Orthodox theories, however, do not respect the truth-functional duality between con-

junctions and disjunctions. For consider the following two verification conditions which or-

thodox theories endorse.

ConjunctionO

A state verifies a conjunction just in case that state is the least upper bound of two

states, one of which verifies one conjunct and one of which verifies the other conjunct.

DisjunctionO

A state verifies a disjunction just in case that state itself verifies at least one of the

disjuncts.

These verification conditions are not duals of each other: they are not, that is, structurally

similar to one another, in the ways that truth conditions for conjunction and disjunction

should be. To see why, it helps to consider the following, alternative accounts of verification

for conjunction and disjunction.

Conjunction2
O

A state verifies a conjunction just in case that state itself verifies both of the conjuncts.

Disjunction2
O

A state verifies a disjunction just in case that state is the greatest lower bound of two

states, one of which verifies one disjunct and one of which verifies the other disjunct.

ConjunctionO is more structurally similar to Disjunction2
O than to DisjunctionO: for whereas

R1 to ψ then s stands in the truth-relevance relation R2 to φ _ ψ given by the Belnap-Dunn truth
table for disjunction.

42



ConjunctionO and Disjunction2
O both take verifiers to be certain sorts of bounds, DisjunctionO

does not. Likewise, DisjunctionO is more structurally similar to Conjunction2
O than to

ConjunctionO: for whereas DisjunctionO and Conjunction2
O both take the verifiers of a more

complex sentence to be verifiers of the parts of that sentence, ConjunctionO does not. So a

theory which endorses ConjunctionO should endorse Disjunction2
O; and a theory which en-

dorses DisjunctionO should endorse Conjunction2
O. But that is not what orthodox theories,

of verification and falsification, actually do. Orthodox theories endorse ConjunctionO and

DisjunctionO. And that is an unattractive, unideal combination of conditions to endorse.

That endorsement breaks the structural similarity—the duality—between conjunction and

disjunction.37

An entirely analogous problem arises for many other conditions which orthodox theories

endorse. For instance, orthodox theories endorse structurally dissimilar falsification condi-

tions for conjunctions and disjunctions. And orthodox theories endorse structurally dissimilar

verification conditions, and falsification conditions too, for universals and existentials.

Statespace does not. When it comes to verification and falsification conditions for

conjunction and disjunction—and for the quantifiers too—Statespace does a better job of

respecting important structural similarities. Statespace captures the dualisms which that

logical vocabulary exemplifies. And that is a reason to prefer Statespace.38

The third reason for preferring Statespace is, in a sense, more basic that the previous

two. Roughly put, Statespace does a better job of adhering to the intuitive, guiding, underly-

ing idea of state-based approaches to truth conditions. According to that idea, a given state

makes a given sentence true, or false, in virtue of having parts which make the subformulas

of that sentence true or false. To make a sentence true is just to have parts which make the
37The reason for this, which I cannot get into here, is that given other postulates of orthodox theories,

endorsing both ConjunctionO and Disjunction2O—or endorsing both Conjunction2O and DisjunctionO—would
have extremely problematic consequences.

38That is also a reason for preferring Statespace over a theory of verification and falsification due to van
Fraassen (1969). Van Fraassen’s theory, a kind of precursor to the contemporary orthodox theories on which
I have focused here, also gives structurally dissimilar truth conditions for ‘^’ and ‘_’, and for ‘@’ and ‘D’ too
(1969, p. 484-486).
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parts of that sentence true. And to make a sentence false is just to have parts which make

the parts of that sentence false. That—according to the intuitive, guiding, underlying idea

of state-based approaches—is what truth and falsity is.

Statespace respects this. To see why, just look at the conditions Conjunction, Disjunc-

tion, Universal, and Existential. Each of those conditions has the following basic form: a

state makes a sentence true just in case, roughly, that state has parts which make the parts

of that sentence true. So according to Statespace, to make a sentence true or false is noth-

ing more—and nothing less—than having parts which make the parts of that sentence true

or false, respectively. So Statespace does a good job of adhering to the intuitive, guiding,

underlying idea of state-based approaches to truth conditions.

Not so, however, for orthodox theories. For according to orthodox theories, there is

more to making a sentence true than having parts which make the parts of the sentence true.

And there is more to making a sentence false than having parts which make the parts of

the sentence false. For instance, take conjunctions. Recall that orthodox theories endorse

ConjunctionO: a state makes a conjunction true just in case, roughly, (i) that state has parts

which make the two conjuncts true, but also (ii) those parts’ least upper bound is that state

itself. So orthodox theories adopt an additional clause in their formulation of the verifica-

tion condition for conjunction. Orthodox theories do similarly for their other verification

conditions, and falsification conditions, too. And that is a reason to prefer Statespace over

orthodox theories.

So Statespace represents a significant improvement over orthodox theories of how states

determine the truth values of sentences. Whereas orthodox theories imply that the verifica-

tion and falsification conditions for quantificational sentences depend on arbitrary features

of the language in question, Statespace does not. Whereas orthodox theories do not respect

certain important similarities between certain logical symbols of first-order languages, States-

pace does. And Statespace does a better job of adhering to the intuitive, guiding, underlying

idea of state-based approaches to truth conditions.
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10 Conclusion

Statespace supports an extremely rich theory of meaning. According to Statespace,

states form a complete, well-founded lattice, ordered by a parthood relation. Moreover,

according to Statespace, sentences in first-order logic are made true and made false by states

in complete, well-ordered lattices: six conditions describe these relations of verification and

falsification.

As has been shown, Statespace can be used to analyze many notions related to sentences

and their meanings. Here is a summary of what I analyzed in this paper:

‚ the contents of sentences,

‚ propositions,

‚ positive partial content,

‚ negative partial content,

‚ partial content,

‚ exact verification,

‚ exact falsification,

‚ subject matters,

‚ aboutness,

‚ entailment,

‚ containment,

‚ counterfactual truth conditions, and

‚ logical subtraction.

Each analysis, of the above, is independently plausible, relatively simple, philosophically

significant, and formally rigorous.

So there is much to like about Statespace. It is an attractive theory of states, sentences,

verification, and falsification. It supports attractive analyses of many different notions related

to sentences and their meanings. And it has some advantages over alternative accounts of
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verification and falsification. Altogether, Statespace is worth taking seriously.

A The Mereology of States

Let S be a set of states. Then a two-place relation Ď over S is a ‘partial order’ just in

case the following holds.

1. Reflexivity: for all s P S, s Ď s.

2. Anti-symmetry: for all s, t P S, if s Ď t and t Ď s then s “ t.

3. Transitivity: for all r, s, t P S, if r Ď s and s Ď t then r Ď t.

For each A Ď S and each s P S, s is an ‘upper bound’ of A just in case for all a P A, a Ď s.

For each A Ď S and each s P S, s is a ‘lower bound’ of A just in case for all a P A, s Ď a. In

addition, for each A Ď S and each s P S, s is a ‘least upper bound’ of A just in case (i) s is

an upper bound of A, and (ii) for all upper bounds t of A, s Ď t. And for each A Ď S and

each s P S, s is a ‘greatest lower bound’ of A if and only if (i) s is a lower bound of A, and

(ii) for all lower bounds t of A, t Ď s. The pair pS,Ďq is a ‘complete lattice’ just in case S

is a set of states, Ď is a partial order over S, and for all A Ď S, the least upper bound
d
A

exists and is in S, and the greatest lower bound
Ů

A exists and is in S. And the complete

lattice pS,Ďq is ‘well-founded’ just in case there is no infinite sequence s1, s2, . . . P S such

that s1 Ľ s2 Ľ ¨ ¨ ¨ .

Definitions concerning cones will be relevant in later appendices. Let pS,Ďq be a com-

plete lattice. Say that C Ď S is a ‘cone’ just in case for some c P S, C “ ts P S | c Ď su. In

addition, for each A Ď S, say that C is a ‘maximal cone in A’ just in case (i) C is a cone in

S, (ii) C Ď A, and (iii) for all C 1 Ď A such that C 1 is a cone in S and C Ď C 1, C “ C 1.

Definitions concerning chains will be relevant in later appendices too. Let pS,Ďq be a

complete lattice. Say that C Ď S is a ‘chain’ just in case for all x, y P C, either x Ď y or

y Ď x. In addition, for each A Ď S, say that C Ď S is a ‘maximal chain in A’ just in case (i)

C is a chain, (ii) C Ď A, and (iii) for all C 1 Ď A such that C 1 is a chain and C Ď C 1, C “ C 1.
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The following lemma says that every chain is contained in a maximal chain.

Lemma A.1. Let S be a set and let Ď be a partial order over S. Then for each B Ď S and

for each chain C such that C Ď B, there exists a maximal chain C 1 in B which contains C.

For a proof, see (Frink, 1952).

One other definition is needed. Let pS,Ďq be a complete lattice. Say that A Ď S is

‘upward closed’ just in case for all a P A and all s P S such that a Ď s, s P A.

B Truth Conditions

In this appendix, I present the fully rigorous truth conditions for sentences of L. To

start, I define several different sorts of functions. Then I define the models. Finally, I present

the truth conditions.

The following two types of functions will be important in what follows. First, a ‘constant

assignment’ is a function which maps each constant in L to an object. Second, a ‘variable

assignment’ is a function which maps each variable in L to an object.

The following piece of notation will also be helpful. Let χ be a variable, let φ be a

formula in which χ appears free, and let κ be a constant. Then φrκ{χs is the formula which

results from replacing each free occurrence of χ in φ with κ.

A ‘model’ is a six-tuple pS,Ď, I, j, | ¨ |`¨ , | ¨ |´¨ q with the following features. First, S is

a set of states, and Ď is a two-place parthood relation over S such that pS,Ďq is a well-

founded, complete lattice. I is a set of objects, and j is a constant assignment which maps

each constant in L to an object in I. Finally, the two-place functions | ¨ |`¨ and | ¨ |´¨ —which

map atomic formulas and variable assignments to sets of states in S—obey the following

constraints.39

39The functions | ¨ |`¨ and | ¨ |´¨ are the precisified versions of the functions V_ and F_ that feature in the
first truth condition in Section 3.
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1. For each atomic formula Fτ1 . . . τn and for each variable assignment g, |Fτ1 . . . τn|`g is

a cone and |Fτ1 . . . τn|´g is a cone.

2. For each atomic formula Fτ1 . . . τn and for all variable assignments g and g1, if g and g1

agree on which variables—among the terms τ1, . . . , τn—are mapped to which objects

in I, then |Fτ1 . . . τn|`g “ |Fτ1 . . . τn|`g1 and |Fτ1 . . . τn|´g “ |Fτ1 . . . τn|
´
g1 .

3. For each variable χ, for each atomic formula φ in which χ appears free, for each constant

κ, and for each variable assignment g, if gpχq “ jpκq then |φ|`g “ |φrκ{χs|`g , and

|φ|´g “ |φrκ{χs|
´
g .

The second constraint says that interpretations of atomic formulas cannot differ, if those

interpretations agree on what the variables in those formulas denote. The third constraint

says that if a variable is taken to denote a specific object, and if some constant also denotes

that object, then interpretations of atomic formulas which feature that variable cannot differ

from interpretations of atomic formulas in which that variable has been replaced by that

constant.

Now for the truth conditions. Let M be a model pS,Ď, I, j, | ¨ |`¨ , | ¨ |´¨ q whose elements

are as described above. Then truth in L—relative to M—is defined recursively; note that in

what follows, ‘,g’ is the relation of verification (relative to variable assignment g), and ‘-g’

is the relation of falsification (relative to variable assignment g).

(1) For all s P S, variable assignments g, natural numbers n, n-place predicates F , and

terms τ1, . . . , τn, s ,g Fτ1 . . . τn if and only if s P |Fτ1 . . . τn|`g .

(2) For all s P S, variable assignments g, natural numbers n, n-place predicates F , and

terms τ1, . . . , τn, s -g Fτ1 . . . τn if and only if s P |Fτ1 . . . τn|´g .

(3) For all s P S, variable assignments g, and formulas φ, s ,g  φ if and only if s -g φ.

(4) For all s P S, variable assignments g, and formulas φ, s -g  φ if and only if s ,g φ.

(5) For all s P S, variable assignments g, and formulas φ and ψ, s ,g φ ^ ψ if and only if

there are t Ď s and u Ď s such that t ,g φ and u ,g ψ.

(6) For all s P S, variable assignments g, and formulas φ and ψ, s -g φ ^ ψ if and only if
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for some t Ď s, either t -g φ or t -g ψ.

(7) For all s P S, variable assignments g, and formulas φ and ψ, s ,g φ _ ψ if and only if

for some t Ď s, either t ,g φ or t ,g ψ.

(8) For all s P S, variable assignments g, and formulas φ and ψ, s -g φ _ ψ if and only if

there are t Ď s and u Ď s such that t -g φ and u -g ψ.

(9) For all s P S, variable assignments g, variables χ, and formulas φpχq in which χ appears

free, s ,g @χφpχq if and only if for all variable assignments g1 which differ from g at

most on χ, there is an s1 Ď s such that s1 ,g1 φpχq.

(10) For all s P S, variable assignments g, variables χ, and formulas φpχq in which χ appears

free, s -g @χφpχq if and only if for some variable assignment g1 which differs from g at

most on χ, there is an s1 Ď s such that s1 -g1 φpχq.

(11) For all s P S, variable assignments g, variables χ, and formulas φpχq in which χ appears

free, s ,g Dχφpχq if and only if for some variable assignment g1 which differs from g at

most on χ, there is an s1 Ď s such that s1 ,g1 φpχq.

(12) For all s P S, variable assignments g, variables χ, and formulas φpχq in which χ appears

free, s -g Dχφpχq if and only if for all variable assignments g1 which differ from g at

most on χ, there is an s1 Ď s such that s1 -g1 φpχq.

Here are some more definitions. For all formulas φ and variable assignments g, let Vφ,g “

ts P S | s ,g φu and let Fφ,g “ ts P S | s -g φu. So Vφ,g is the set of all states which verify φ

(relative to g), and Fφ,g is the set of all states which falsify φ (relative to g).

C Contents, Propositions, and Parts

In this appendix, I prove the theorem—mentioned in Section 4—which says that verifiers

and falsifiers are unions of maximal cones. By way of preparation, I prove a series of additional

theorems and lemmas.
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Lemma C.1. For each formula φ of L and for each variable assignment g, Vφ,g is non-empty

and upward closed, and Fφ,g is non-empty and upward closed.

Proof. The proof is by induction on the complexity of formulas. The inductive hypothesis is

this: for each formula φ of complexity less than n, and for each variable assignment g, Vφ,g

is non-empty and upward closed, and Fφ,g is non-empty and upward closed.

For the base case, let φ be an atomic formula. For all variable assignments g, |φ|`g

and |φ|´g are cones; so they are non-empty and upward closed. So by (1), for each variable

assignment g, Vφ,g is non-empty and upward closed. And by (2), for each variable assignment

g, Fφ,g is non-empty and upward closed too. This establishes the base case.

For the inductive step, there are five cases to consider. First, for some formula ψ, φ is

 ψ. Second, for some formulas φ1 and φ2, φ is φ1 ^ φ2. Third, for some formulas φ1 and φ2,

φ is φ1 _ φ2. Fourth, for some formula ψ and some variable χ, φ is @χψpχq. Fifth, for some

formula ψ and some variable χ, φ is Dχψpχq. Let us consider each of these in turn.

First, suppose that φ is  ψ. By the inductive hypothesis, for all variable assignments

g, Fψ,g is non-empty and upward closed, and Vψ,g is non-empty and upward closed. So (3)

and (4) imply that for all variable assignments g, V ψ,g is non-empty and upward closed, and

F ψ,g is non-empty and upward closed.

Second, suppose that φ is φ1^φ2. The inductive hypothesis implies that for all variable

assignments g, Vφ1,g, Fφ1,g, Vφ2,g, and Fφ2,g are all non-empty and upward closed. To show

that Vφ,g and Fφ,g are non-empty, take s1 P Vφ1,g, t1 P Fφ1,g, s2 P Vφ2,g, and t2 P Fφ2,g. Let

s “ s1 [ s2, and let t “ t1 [ t2. Since there are states s1 and s2 such that s1 Ď s, s2 Ď s,

s1 ,g φ1, and s2 ,g φ2, (5) implies that s ,g φ1 ^ φ2; so Vφ,g is non-empty. An analogous

argument, along with (6), shows that t -g φ1 ^ φ2; so Fφ,g is non-empty.

Now let us show that Vφ,g and Fφ,g are upward closed. Suppose that r P Vφ,g, s P S,

and r Ď s. Along with the fact that r Ď s, (5) implies that there are states r1 and r2 such

that r1 Ď s, r2 Ď s, r1 ,g φ1, and r2 ,g φ2. So by (5) again, s P Vφ,g; and so Vφ,g is upward

closed. A similar line of reasoning shows that Fφ,g is upward closed too.
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Third, suppose that φ is φ1 _ φ2. As shown by an argument entirely analogous to

the one for the case where φ was φ1 ^ φ2, for each variable assignment g, Vφ,g and Fφ,g are

both non-empty. The proof that Vφ,g is upward closed is entirely analogous to the proof that

Fφ1^φ2,g is upward closed. And the proof that Fφ,g is upward closed is entirely analogous to

the proof that Vφ1^φ2,g is upward closed.

Fourth, suppose that φ is @χψpχq. Let g be a variable assignment. By the inductive

hypothesis, for each variable assignment g1 which differs from g at most on χ, Vψpχq,g1 is

non-empty and upward closed, and Fψpχq,g1 is non-empty and upward closed. To start, let

us show that Vφ,g and Fφ,g are non-empty. Towards that end, note that for each such g1,

there are states sg1 and tg1 such that sg1 ,g1 ψpχq and tg1 -g1 ψpχq. Let S 1 be the set of all

these sg1 , and let T 1 be the set of all these tg1 . Let s “
d
S 1 and let t “

d
T 1. For each

variable assignment g1 which differs from g at most on χ, there is a state s1 Ď s—namely,

s1 “ sg1—such that s1 ,g1 ψpχq. So by (9), s ,g @χψpχq. Therefore, Vφ,g is non-empty. An

entirely analogous line of reasoning shows that Fφ,g is non-empty too.

Now let us show that Vφ,g and Fφ,g are upward closed. Suppose that r P Vφ,g, s P S,

and r Ď s. Along with the fact that r Ď s, (9) implies that for each g1 which differs from g

at most on χ, there is a state r1 Ď s such that r1 ,g1 ψpχq. So by (9) again, s P Vφ,g; in other

words, Vφ,g is upward closed. A similar line of reasoning shows that Fφ,g is upward closed

too.

Fifth, suppose that φ is Dχψpχq. As shown by an argument entirely analogous to the

one for the case where φ was @χψpχq, for each variable assignment g, Vφ,g and Fφ,g are both

non-empty. The proof that Vφ,g is upward closed is entirely analogous to the proof that

F@χψpχq,g is upward closed. And the proof that Fφ,g is upward closed is entirely analogous to

the proof that V@χψpχq,g is upward closed.

Here are some more useful definitions. Let G be the set of all variable assignments. For

all formulas φ, let Vφ “
Ş

gPG

Vφ,g, and let Fφ “
Ş

gPG

Fφ,g.

The following theorem says that the verifiers and falsifiers of sentences—which are

51



verifiers and falsifiers of those sentences for each and every variable assignment whatsoever—

both (i) exist, and (ii) form upward closed sets.

Theorem C.1. For each sentence φ in L, Vφ is non-empty and upward closed, and Fφ is

non-empty and upward closed.

Proof. Let φ be a sentence in L. To start, let us show that both Vφ and Fφ are non-empty.

By lemma C.1, for each variable assignment g, there exists sg P Vφ,g and tg P Fφ,g. Let S be

the set of all these sg, and let T be the set of all these tg. Let s “
d
S, and let t “

d
T . Note

that for all g, sg Ď s and tg Ď t. Therefore, since lemma C.1 implies that Vφ,g and Fφ,g are

upward closed for each g, it follows that for each g, s P Vφ,g and t P Fφ,g. Therefore, s P Vφ

and t P Fφ; so Vφ and Fφ are non-empty.

Now let us show that both Vφ and Fφ are upward closed. Towards that end, suppose

that r P Vφ, s P S, and r Ď s. Then for each variable assignment g, r P Vφ,g. Since lemma C.1

implies that each such Vφ,g is upward closed, it follows that for each g, s P Vφ,g. Therefore,

s P Vφ; so Vφ is upward closed. An entirely analogous argument shows that Fφ is upward

closed too.

The following lemma says that every maximal chain of verifiers, and every maximal

chain of falsifiers, contains its greatest lower bound.

Lemma C.2. Let φ be a sentence. If C is a chain in Vφ then
Ů

C P C, and if C is a chain

in Fφ then
Ů

C P C.

Proof. Let C be a chain in Vφ. Since Ď is well-founded, it is not the case that there exist

states s1, s2, . . . P C such that s1 Ľ s2 Ľ ¨ ¨ ¨ . Along with the fact that C is a chain, it follows

that there exists a state c P C such that for all s P C, c Ď s. The definition of greatest

lower bound, along with the fact that c P C, implies that c “
Ů

C. Therefore,
Ů

C P C. An

entirely analogous argument shows that if C is a chain in Fφ, then
Ů

C P C.

The following theorem—mentioned in Section 4—describes the general structure of
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verifiers and falsifiers. It says that each sentence’s verifiers, and falsifiers, are basically just

unions of maximal cones.

Theorem C.2 (theorem 1 in the main text). Let φ be a sentence. Then Vφ is the union of

cones which are maximal in Vφ, and Fφ is the union of cones which are maximal in Fφ.

Proof. For each v P Vφ, lemma A.1 implies that there is a chain Cv Ď S which is maximal

in Vφ and which contains v. For each such v, let cv “
Ů

Cv. By lemma C.2, for each such

v, cv P Cv. By theorem C.1, and in particular the fact that Vφ is upward closed, the cone

Av “ ts P S | cv Ď su is a subset of Vφ. In addition, note that since Cv is maximal, then for

all w P Vφ such that w Ď cv, w “ cv. Therefore, the cone Av is maximal in Vφ. Let M be the

set of all these cones Av. Then
Ť

M “ Vφ. So Vφ is the union of cones which are maximal in

Vφ. An entirely analogous argument shows that Fφ is the union of cones which are maximal

in Fφ.

D Exact Verification, Exact Falsification, Subject Matter, and Aboutness

Here is the fully rigorous definition of subject matter. Let φ be a sentence. By theorem

C.2, there exists a set of cones CV—each of which is maximal in Vφ—such that Vφ “
Ť

CV .

For each C P CV , let vC be the point of C. Then let vφ “
d

CPCV
vC . Similarly, by theorem C.2,

there exists a set of cones CF—each of which is maximal in Fφ—such that Fφ “
Ť

CF . For

each C P CF , let fC be the point of C. Then let fφ “
d

CPCF
fC . Finally, the subject matter of

φ is xvφ, fφy.

The following theorem—mentioned in Section 5—says that the positive subject matter

of a sentence verifies that sentence, and the negative subject matter of a sentence falsifies

that sentence.

Theorem D.1 (theorem 2 in the main text). Let φ be a sentence with subject matter xvφ, fφy.

Then vφ P Vφ and fφ P Fφ.

53



Proof. Let CV and CF be as defined above. For each C P CV , let vC be as defined above.

And for each C P CF , let fC be as defined above too.

For each C P CV , vC P Vφ and vC Ď vφ. Therefore, by theorem C.1, vφ P Vφ. An entirely

analogous argument shows that fφ P Fφ.

E Entailment and Containment

In this section, I present a few results concerning entailment, containment, and part-

hood. The following two theorems show that quantifiers, and their instances, stand in the

intuitively appropriate entailment relations to one another.

Theorem E.1. Let χ be a variable, let κ be a constant, and let φpχq be a formula in which

only χ appears free. Then for all states s, if s , @χφpχq then s , φrκ{χs, and if s - φrκ{χs

then s - @χφpχq.

Theorem E.2. Let χ be a variable, let κ be a constant, and let φpχq be a formula in which

only χ appears free. Then for all states s, if s , φrκ{χs then s , Dχφpχq, and if s - Dχφpχq

then s - φrκ{χs.

Since the proofs of these theorems are fairly straightforward but also fairly technical,40 I omit

them.

Now for some important facts about parthood and the containment relation. The

following theorem says that parthood is sufficient for containment.

Theorem E.3. Let P “ xPV ,PF y and Q “ xQV ,QF y. Suppose that P is part of Q. Then

P is contained in Q.

Proof. By theorem C.2, there exists a set of cones C 1 such that for all CQ P C
1, CQ is maximal

in QV and QV “
Ť

C 1. For each CQ P C
1, let cQ be the point of CQ. By Partial Content

40They rely on the second and third constraints on the functions | ¨ |`¨ and | ¨ |´¨ mentioned in Appendix B.
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and Positive Partial Content, it follows that for each CQ P C
1 with point cQ, there is

a cone CP such that (i) CP is maximal in PV , and (ii) CP has a point cP such that cP Ď cQ.

By Proposition, PV is upward closed. Therefore, for each CQ P C
1, there is a cone CP

such that (i) CP is maximal in PV , and (ii) CQ Ď CP . Therefore, QV “
Ť

C 1 Ď PV . An

entirely analogous argument—using Negative Partial Content—shows that QF Ď PF .

Therefore, by Containment, P is contained in Q.

The following theorem says that containment is not sufficient for parthood.

Theorem E.4. There are propositions P “ xPV ,PF y and Q “ xQV ,QF y such that P is

contained in Q but P is not part of Q.

Proof. Let p1 and p2 be states such that neither is part of the other. Let p3 be a state.

Let Cp1 “ ts P S | p1 Ď su, Cp2 “ ts P S | p2 Ď su, and Cp3 “ ts P S | p3 Ď su. Let

PV “ Cp1 Y Cp2 , let PF “ Cp3 , let QV “ Cp1 , and let QF “ Cp3 . Then QV Ď PV and

QF Ď PF ; so by Containment, P is contained in Q. Nevertheless, there is a cone CP

which is maximal in PV but which has a point cP such that for all cones CQ which are

maximal in QV and which have a point cQ, cP Ę cQ: just let CP be the cone Cp2 . So by

Positive Partial Content and Partial Content, P is not part of Q.

F Counterfactuals

The comparative similarity relation is expressed by a three-place predicate ‘C’ over a

set of states S. Intuitively, for all s, t, u P S, ‘Cstu’ says that s is more similar to t than to

u. The relation C varies from context to context: in some contexts, ‘Cstu’ might be true; in

other contexts, ‘Csut’ might be true instead.
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G Logical Subtraction

Let pS,Ďq be a complete, well-founded lattice. Then here are two more conditions

which pS,Ďq may satisfy.

1. Distributivity: for all A Ď S, and for all s P S,
Ů

pA[ sq Ď
`
Ů

A
˘

[ s.

2. Existence of Complement: for all s P S, there exists sK P S such that s [ sK “ 1 and

s\ sK “ 0.41

Now for an extremely important lemma.

Lemma G.1. Let pS,Ďq be a complete, complemented, distributive lattice. Then for all

x, y P S such that x Ď y, there exists z P S such that y “ z [ x.

Proof. Since pS,Ďq is complemented, there exists a state xK such that x [ xK “ 1 and

x\ xK “ 0. Let z “ y\ xK. Then z[ x “ py\ xKq [ x “ py[ xq \ pxK[ xq “ py[ xq \ 1 “

py [ xq “ y, where the first equality follows from the definition of z, the second equality

follows from the fact that pS,Ďq is distributive, the third equality follows from the definition

of xK, the fourth equality follows from the definition of 1, and the fifth equality follows from

the fact that pS,Ďq is a lattice.

Now for a key result.

Theorem G.1 (theorem 3 in the main text). Let pS,Ďq be a complete, complemented, dis-

tributive, well-founded lattice. Let x, y P S be such that x Ď y. Let Zx,y “ tz P S | y “ z[xu.

Then Zx,y is non-empty and y “
`
Ů

Zx,y
˘

[ x.

Proof. Lemma G.1 implies that Zx,y is non-empty. As for the rest of this theorem, note that

for each z P Zx,y, y “ z[x. Therefore, Zx,y[x “ tyu. And so
`
Ů

Zx,y
˘

[x “
Ů

pZx,y[xq “ y,

where the first equality follows from the fact that pS,Ďq is distributive, and the second

equality follows from the fact that Zx,y [ x “ tyu.
41Note that 0 “

Ů

S and 1 “
d
S.
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In what follows, let ‘´1’ be the two-place function defined like this: for all states x, y P S such

that x Ď y, y ´1 x “
Ů

Zx,y. Theorem G.1 shows that ´1 is a well-defined function whose

domain is the set of all pairs px, yq of states in S such that y contains x as a part.

The analysis of logical subtraction is based on several preliminary definitions. To start,

let P “ xPV ,PF y and Q “ xQV ,QF y be propositions, and suppose that P is part of Q. Let

cPV
1 , cPV

2 , . . . , be the points of the maximal cones in PV . Let cQV
1 , cQV

2 , . . . , be the points of

the maximal cones in QV . Let cPF
1 , cPF

2 , . . . , be the points of the maximal cones in PF . And

let cQF
1 , cQF

2 , . . . , be the points of the maximal cones in QF . For each cPV
i , let cQV

i1
, cQV

i2
, . . . ,

be the collection of points of maximal cones in QV such that each cQV
ij

contains cPV
i as a part.

And for each cPF
i , let cQF

i1
, cQF

i2
, . . . , be the collection of points of maximal cones in QF such

that each cQF
ij

contains cPF
i as a part. For each pair of states cPV

i and cQV
ij

, let viji “ cQV
ij
´1cPV

i .

And for each pair of states cPF
i and cQF

ij
, let f iji “ cQF

ij
´1 cPF

i . Finally, define ‘´˚’ as follows:

let QV ´
˚ PV “ ts P S | for some i and j, viji Ď su, and let QF ´

˚ PF “ ts P S | for some i

and j, f iji Ď su. Then the operation ‘´’ of logical subtraction may be defined as in the main

text.

Acknowledgements

[to be added]
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